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Abstract

Large language models (LLMs) demonstrate pow-
erful capabilities, but they still face challenges in
practical applications, such as hallucinations, slow
knowledge updates, and lack of transparency in
answers. Retrieval-Augmented Generation (RAG)
refers to the retrieval of relevant information from
external knowledge bases before answering ques-
tions with LLMs. RAG has been demonstrated
to significantly enhance answer accuracy, reduce
model hallucination, particularly for knowledge-
intensive tasks. By citing sources, users can verify
the accuracy of answers and increase trust in model
outputs. It also facilitates knowledge updates
and the introduction of domain-specific knowl-
edge. RAG effectively combines the parameter-
ized knowledge of LLMs with non-parameterized
external knowledge bases, making it one of the
most important methods for implementing large
language models. This paper outlines the develop-
ment paradigms of RAG in the era of LLMs, sum-
marizing three paradigms: Naive RAG, Advanced
RAG, and Modular RAG. It then provides a sum-
mary and organization of the three main compo-
nents of RAG: retriever, generator, and augmenta-
tion methods, along with key technologies in each
component. Furthermore, it discusses how to eval-
uate the effectiveness of RAG models, introducing
two evaluation methods for RAG, emphasizing key
metrics and abilities for evaluation, and presenting
the latest automatic evaluation framework. Finally,
potential future research directions are introduced
from three aspects: vertical optimization, horizon-
tal scalability, and the technical stack and ecosys-
tem of RAG.!

1 Introduction

The large language models (LLMs) are more pow-
erful than anything we have seen in Natural Lan-
GPT series
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models[Brown et al., 2020, OpenAl, 2023], the LLama series
models[Touvron ef al., 20231, Gemini[Google, 2023], and
other large language models demonstrate impressive lan-
guage and knowledge mastery, surpassing human benchmark
levels in multiple evaluation benchmarks[Wang et al., 2019,
Hendrycks et al., 2020, Srivastava et al., 2022].

However, large language models also exhibit
numerous  shortcomings. They often fabricate
facts[Zhang et al., 2023b] and lack knowledge when
dealing with specific domains or highly specialized

queries[Kandpal et al., 2023]. For instance, when the infor-
mation sought extends beyond the model’s training data or
requires the latest data, LLM may fail to provide accurate
answers. This limitation poses challenges when deploying
generative artificial intelligence in real-world production
environments, as blindly using a black-box LLM may not
suffice.

Traditionally, neural networks adapt to specific domains
or proprietary information by fine-tuning models to param-
eterize knowledge. While this technique yields significant
results, it demands substantial computational resources, in-
curs high costs, and requires specialized technical expertise,
making it less adaptable to the evolving information land-
scape. Parametric knowledge and non-parametric knowledge
play distinct roles. Parametric knowledge is acquired through
training LLMs and stored in the neural network weights, rep-
resenting the model’s understanding and generalization of
the training data, forming the foundation for generated re-
sponses. Non-parametric knowledge, on the other hand, re-
sides in external knowledge sources such as vector databases,
not encoded directly into the model but treated as updatable
supplementary information. Non-parametric knowledge em-
powers LLMs to access and leverage the latest or domain-
specific information, enhancing the accuracy and relevance
of responses.

Purely parameterized language models (LLMs) store their
world knowledge, which is acquired from vast corpora, in
the parameters of the model. Nevertheless, such models have
their limitations. Firstly, it is difficult to retain all the knowl-
edge from the training corpus, especially for less common
and more specific knowledge. Secondly, since the model
parameters cannot be updated dynamically, the parametric
knowledge is susceptible to becoming outdated over time.
Lastly, an expansion in parameters leads to increased com-
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putational expenses for both training and inference. To ad-
dress the limitations of purely parameterized models, lan-
guage models can adopt a semi-parameterized approach by
integrating a non-parameterized corpus database with pa-
rameterized models. This approach is known as Retrieval-
Augmented Generation (RAG).

The term Retrieval-Augmented Generation (RAG) was
first introduced by [Lewis et al., 2020]. It combines a pre-
trained retriever with a pre-trained seq2seq model (generator)
and undergoes end-to-end fine-tuning to capture knowledge
in a more interpretable and modular way. Before the advent
of large models, RAG primarily focused on direct optimiza-
tion of end-to-end models. Dense retrievals on the retrieval
side, such as the use of vector-based Dense Passage Retrieval
(DPR)[Karpukhin et al., 20201, and training smaller models
on the generation side are common practices. Due to the
overall smaller parameter size, both the retriever and gener-
ator often undergo synchronized end-to-end training or fine-
tuning[Izacard er al., 2022].

After the emergence of LLM like ChatGPT, generative lan-
guage models became predominant, showcasing impressive
performance across various language tasks[Bai et al., 2022,
OpenAl, 2023, Touvron et al., 2023, Google, 2023]. How-
ever, LLMs still face challenges such as hallucina-
tions [Yao et al., 2023, Bang et al., 2023], knowledge up-
dates, and data-related issues. This affects the relia-
bility of LLMs, making them struggle in certain seri-
ous task scenarios, especially in knowledge-intensive tasks
requiring access to a vast amount of knowledge, such
as open-domain question answering[Chen and Yih, 2020,
Reddy et al., 2019, Kwiatkowski et al., 2019] and common-
sense reasoning[Clark er al., 2019, Bisk et al., 2020]. Im-
plicit knowledge within parameters may be incomplete and
insufficient.

Subsequent research found that introducing RAG into large
models’ In-Context Learning (ICL) can alleviate the afore-
mentioned issues, with significant and easily implementable
effects. During the inference process, RAG dynamically re-
trieves information from external knowledge sources, using
the retrieved data as references to organize answers. This sub-
stantially improves the accuracy and relevance of responses,
effectively addressing the hallucination issues present in
LLMs. This technique quickly gained traction after the ad-
vent of LLM and has become one of the hottest technologies
for improving chatbots and making LLM more practical. By
separating factual knowledge from the training parameters of
LLMs, RAG cleverly combines the powerful capabilities of
generative models with the flexibility of retrieval modules,
providing an effective solution to the incomplete and insuf-
ficient knowledge problem inherent in purely parameterized
models.

The paper systematically reviews and analyzes the current
research approaches and future development paths of RAG,
summarizing them into three main paradigms: Naive RAG,
Advanced RAG, and Modular RAG. Subsequently, the paper
provides a consolidated summary of the three core compo-
nents: Retrieval, Augmented, and Generation, highlighting
the improvement directions and current technological char-
acteristics of RAG. In the section on augmentation methods,

the current work is organized into three aspects: the augmen-
tation stages of RAG, augmentation data sources, and aug-
mentation process. Furthermore, the paper summarizes the
evaluation system, applicable scenarios, and other relevant
content related to RAG. Through this article, readers gain a
more comprehensive and systematic understanding of large
models and retrieval-Augmented generation. They become
familiar with the evolutionary path and key technologies of
knowledge retrieval augment, enabling them to discern the
advantages and disadvantages of different techniques, iden-
tify applicable scenarios, and explore current typical applica-
tion cases in practice.It is noteworthy that in previous work,
Feng el al.[2023b] systematically reviewed the methods, ap-
plications, and future trends of combining large models with
knowledge, with a primary focus on knowledge editing and
retrieval augmentation methods. Zhu et al.[2023] introduced
the latest advancements in augmenting retrieval systems for
Large Language Models, with a specific focus on the retrieval
system. Meanwhile, Asai et al.[2023a] focusing on ques-
tions such as “What”, “When”, “How”, analyzed and eluci-
dated the key processes in Retrieval-based Language Mod-
els. In comparison with them, this paper aims to systemati-
cally outline the entire process of Retrieval-Augmented Gen-
eration (RAG) and focuses specifically on research related to
augmenting the generation of large language models through
knowledge retrieval.

The development of RAG algorithms and models is il-
lustrated in Fig 1. On a timeline, most of the research re-
lated to RAG emerged after 2020, with a significant turn-
ing point in December 2022 when ChatGPT was released.
Since the release of ChatGPT, research in the field of natu-
ral language processing has entered the era of large models.
Naive RAG techniques quickly gained prominence, leading
to a rapid increase in the number of related studies.In terms
of enhancement strategies, research on reinforcement during
the pre-training and supervised fine-tuning stages has been
ongoing since the concept of RAG was introduced. However,
most of the research on reinforcement during the inference
stage emerged during the era of LLMs. This is primarily due
to the high training costs associated with high-performance
large models. Researchers have attempted to enhance model
generation by incorporating external knowledge in a cost-
effective manner through the inclusion of RAG modules dur-
ing the inference stage. Regarding the use of augmented
data, early RAG primarily focused on the application of un-
structured data, particularly in the context of open-domain
question answering. Subsequently, the range of knowledge
sources for retrieval expanded, with the use of high-quality
data as knowledge sources effectively addressing issues such
as internalization of incorrect knowledge and hallucinations
in large models. This includes structured knowledge, with
knowledge graphs being a representative example. Recently,
there has been increased attention on self-retrieval, which in-
volves mining the knowledge of LLMs themselves to enhance
their performance.

The subsequent chapters of this paper are structured as fol-
lows: Chapter 2 provides an introduction to the background
of RAG.Chapter 3 introduces the mainstream paradigms of
RAG.Chapter 4 analyzes the retriever in RAG.Chapter 5 fo-
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Figure 1: A timeline of existing RAG research. The timeline was established mainly according to the release date.

cuses on introducing the generator in RAG.Chapter 6 em-
phasizes the introduction of the augmentation methods in
RAG.Chapter 7 introduces the evaluation system of RAG.
Chapter 8 provides an outlook on the future development
trends of RAG. Finally, in Chapter 9, we summarize the main
contents of the survey.

2 Background

In this chapter, we will introduce the definition of RAG, as
well as the comparison between RAG and other model opti-
mization techniques, such as fine-tuning.

2.1 Definition

The meaning of RAG has expanded in tandem with techno-
logical developments. In the era of Large Language Mod-
els, the specific definition of RAG refers to the model, when
answering questions or generating text, first retrieving rele-
vant information from a vast corpus of documents. Subse-
quently, it utilizes this retrieved information to generate re-
sponses or text, thereby enhancing the quality of predictions.
The RAG method allows developers to avoid the need for
retraining the entire large model for each specific task. In-
stead, they can attach a knowledge base, providing additional
information input to the model and improving the accuracy
of its responses. RAG methods are particularly well-suited
for knowledge-intensive tasks. In summary, the RAG system
consists of two key stages:

1. Utilizing encoding models to retrieve relevant docu-
ments based on questions, such as BM25, DPR, Col-
BERT, and similar approaches[Robertson ef al., 2009,
Karpukhin er al., 2020, Khattab and Zaharia, 2020].

2. Generation Phase: Using the retrieved context as a con-
dition, the system generates text.

2.2 RAG vs Fine-tuning

In the optimization of Large Language Models (LLMs), in
addition to RAG, another important optimization technique
is fine-tuning.

RAG is akin to providing a textbook to the model, allow-
ing it to retrieve information based on specific queries. This
approach is suitable for scenarios where the model needs to
answer specific inquiries or address particular information re-
trieval tasks. However, RAG is not suitable for teaching the
model to understand broad domains or learn new languages,
formats, or styles.

Fine-tuning is similar to enabling students to internal-
ize knowledge through extensive learning. This approach
is useful when the model needs to replicate specific struc-
tures, styles, or formats. Fine-tuning can enhance the perfor-
mance of non-fine-tuned models and make interactions more
efficient. It is particularly suitable for emphasizing exist-
ing knowledge in the base model, modifying or customizing
the model’s output, and providing complex directives to the
model. However, fine-tuning is not suitable for incorporating
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Figure 2: RAG compared with other model optimization methods

new knowledge into the model or for situations that demand
quick iteration for new use cases.

Fine-tuning is similar to having students internalize knowl-
edge through prolonged learning. This method is applicable
when the model needs to replicate specific structures, styles,
or formats. Fine-tuning can achieve performance superior to
non-fine-tuned models, and interactions are more efficient.
Fine-tuning is particularly suitable for emphasizing existing
knowledge in the base model, modifying or customizing the
model’s output, and instructing the model with complex di-
rectives. However, fine-tuning is not suitable for adding new
knowledge to the model or for scenarios that require rapid it-
eration for new use cases. The specific comparison between
RAG and Fine-tuning (FT) can be elucidated in Table 1.

RAG and fine-tuning are not mutually exclusive but can
complement each other, enhancing the model’s capabilities at
different levels. In certain situations, combining these two
techniques can achieve optimal model performance. The en-
tire process of optimizing with RAG and fine-tuning may re-
quire multiple iterations to achieve satisfactory results.

Existing research has demonstrated significant ad-
vantages of Retrieval-Augmented Generation (RAG)
compared to other methods for optimizing large lan-
guage models[Shuster ef al., 2021, Yasunaga ef al., 2022,
Wang et al., 2023c¢, Borgeaud et al., 2022]:

* RAG improves accuracy by associating answers with ex-
ternal knowledge, reducing hallucination issues in lan-
guage models and making generated responses more ac-
curate and reliable.

e The use of retrieval techniques allows the identifica-
tion of the latest information. Compared to traditional

language models relying solely on training data, RAG
maintains the timeliness and accuracy of responses.

Transparency is an advantage of RAG. By citing
sources, users can verify the accuracy of the answers,
increasing trust in the model’s output.

RAG has customization capabilities. Models can be tai-
lored to different domains by indexing relevant textual
corpora, providing knowledge support for specific fields.

In terms of security and privacy management, RAG,
with its built-in roles and security controls in the
database, can better control data usage. In contrast, fine-
tuned models may lack clear management of who can
access which data.

RAG is more scalable. It can handle large-scale datasets
without the need to update all parameters and create
training sets, making it more economically efficient.

Lastly, results produced by RAG are more trustworthy.
RAG selects deterministic results from the latest data,
while fine-tuned models may exhibit hallucinations and
inaccuracies when dealing with dynamic data, lacking
transparency and credibility.

3 RAG Framework

The research paradigm of RAG is constantly evolving. This
chapter primarily introduces the evolution of the RAG re-
search paradigm. We categorize it into three types: Naive
RAG, Advanced RAG, and Modular RAG. Although the
early RAG was cost-effective and performed better than the
native LLM, it still faced many shortcomings. The emergence



Feature Comparison

RAG

Fine-tuning

Knowledge Updates

Directly updates the retrieval knowledge
base, ensuring information remains current
without the need for frequent retraining, suit-
able for dynamic data environments.

Stores static data, requiring retraining for
knowledge and data updates.

External Knowledge

Proficient in utilizing external resources,
particularly suitable for documents or other
structured/unstructured databases.

Can be applied to align the externally learned
knowledge from pretraining with large lan-
guage models, but may be less practical for
frequently changing data sources.

Data Processing

Requires minimal data processing and han-
dling.

Relies on constructing high-quality datasets,
and limited datasets may not yield significant
performance improvements.

Model Customization

Focuses on information retrieval and inte-
grating external knowledge but may not fully
customize model behavior or writing style.

Allows adjustments of LLM behavior, writ-
ing style, or specific domain knowledge
based on specific tones or terms.

Interpretability

Answers can be traced back to specific data
sources, providing higher interpretability and
traceability.

Like a black box, not always clear why the
model reacts a certain way, with relatively
lower interpretability.

Computational Resources

Requires computational resources to support
retrieval strategies and technologies related
to databases. External data source integration
and updates need to be maintained.

Preparation and curation of high-quality
training datasets, definition of fine-tuning
objectives, and provision of corresponding
computational resources are necessary.

Latency Requirements

Involves data retrieval, potentially leading to

LLM after fine-tuning can respond without

higher latency.

retrieval, resulting in lower latency.

Inherently less prone to hallucinations as
each answer is grounded in retrieved evi-

Reducing Hallucinations
dence.

Can help reduce hallucinations by training
the model based on specific domain data but
may still exhibit hallucinations when faced
with unfamiliar input.

Ethical and privacy concerns arise from
storing and retrieving text from external

Ethical and Privacy Issues
databases.

Ethical and privacy concerns may arise due
to sensitive content in the training data.

Table 1: Comparison between RAG and Fine-tuning

of Advanced RAG and Modular RAG were aimed at address-
ing specific deficiencies in the Naive RAG.

3.1 Naive RAG

The Naive RAG research paradigm represents the earliest
methodology gained prominence shortly after the widespread
adoption of ChatGPT. The naive RAG involves traditional
process: indexing, retrieval, and generation. Naive RAG
is also summarized as a “Retrieve”-“Read” framework
[Ma et al., 2023al.

Indexing

The pipeline for obtaining data from the source and building
an index for it generally occurs in an offline state. Specifi-
cally, the construction of a data index involves the following
steps:

1.Data Indexing:This involves cleaning and extracting the
original data, converting different file formats such as PDF,
HTML, Word, Markdown, etc., into plain text.

2.Chunking: This involves dividing the loaded text into
smaller chunks. This is necessary because language mod-
els typically have a limit on the amount of context they can
handle, so it is necessary to create as small text chunks as
possible.

3. Embedding and Creating Index: This is the process of
encoding text into vectors through a language model. The re-
sulting vectors will be used in the subsequent retrieval process
to calculate the similarity between the vector and the problem
vector.The embedding models require a high inference speed.
Since it is necessary to encode a large amount of corpus and
encode the problem in real time when the user asks a question,



the parameter size of the model should not be too large.After
generating the embedding, the next step is to create an in-
dex, storing the original corpus chunks and embedding in the
form of key-value pairs for quick and frequent searches in the
future.

Retrieve

Given a user’s input, the same encoding model as in the first
stage is used to convert the query into a vector. The similarity
between the question embedding and the embedding of the
document blocks in the corpus is calculated. The top K docu-
ment blocks are chosen as the augmented context information
for the current question based on the level of similarity.

Generation

The given question and related documents are combined into
a new prompt. The large language model is then tasked with
answering the question based on the provided information. It
may be decided whether to allow the large model to use its
knowledge or only to answer based on the given information,
depending on the needs of different tasks. If there is historical
dialogue information, it can also be merged into the prompt
for multi-round dialogues.

Drawbacks in Naive RAG

The Naive RAG confronts principal challenges in three ar-
eas: retrieval quality, response generation quality, and the
augmentation process.

Regarding retrieval quality, the issues are multifaceted.
The primary concern is low precision, where not all blocks
within the retrieval set correlate with the query, leading to
potential hallucination and mid-air drop issues. A secondary
issue is low recall, which arises when not all relevant blocks
are retrieved, thereby preventing the LLM from obtaining suf-
ficient context to synthesize an answer. Additionally, out-
dated information presents another challenge, where data re-
dundancy or out-of-date data can result in inaccurate retrieval
outcomes.

In terms of response generation quality, the issues are
equally diverse. Hallucination is a prominent issue where the
model fabricates an answer that doesn’t exist in the context.
Irrelevance is another concern where the model generates an
answer that fails to address the query. Further, toxicity or
bias, where the model generates a harmful or offensive re-
sponse, is another problem.

Finally, the augmentation process also faces several chal-
lenges. Crucially, the effective integration of the context from
retrieved passages with the current generation task is of ut-
most importance. If mishandled, the output might appear in-
coherent or disjointed. Redundancy and repetition are another
issue, particularly when multiple retrieved passages contain
similar information, leading to content repetition in the gen-
eration step. Moreover, determining the importance or rele-
vance of multiple retrieved passages to the generation task is
challenging, and the augmentation process needs to balance
the value of each passage appropriately. The retrieved con-
tent may also come from different writing styles or tones, and
the augmentation process needs to reconcile these differences
to ensure output consistency. Lastly, generation models may
overly rely on augmented information, resulting in output that

merely repeats the retrieved content, without providing new
value or synthesized information.

3.2 Advanced RAG

Advanced RAG has made targeted improvements to over-
come the deficiencies of Naive RAG. In terms of the quality
of retrieval generation, Advanced RAG has incorporated pre-
retrieval and post-retrieval methods. To address the indexing
issues encountered by Naive RAG, Advanced RAG has op-
timized indexing through methods such as sliding window,
fine-grained segmentation, and metadata. Concurrently, it has
put forward various methods to optimize the retrieval process.
In terms of specific implementation, Advanced RAG can be
adjusted either through a pipeline or in an end-to-end manner.

Pre-Retrieval Process
* Optimizing Data Indexing
The purpose of optimizing data indexing is to enhance
the quality of indexed content. Currently, there are five
main strategies employed for this purpose: increasing
the granularity of indexed data, optimizing index struc-
tures, adding metadata, alignment optimization, and
mixed retrieval.

1. Enhancing Data Granularity: The objective of
pre-index optimization is to improve text standard-
ization, consistency, and ensure factual accuracy
and contextual richness to guarantee the perfor-
mance of the RAG system. Text standardization in-
volves removing irrelevant information and special
characters to enhance the efficiency of the retriever.
In terms of consistency, the primary task is to elim-
inate ambiguity in entities and terms, along with
eliminating duplicate or redundant information to
simplify the retriever’s focus. Ensuring factual ac-
curacy is crucial, and whenever possible, the accu-
racy of each piece of data should be verified. Con-
text retention, to adapt to the system’s interaction
context in the real world, can be achieved by adding
another layer of context with domain-specific anno-
tations, coupled with continuous updates through
user feedback loops. Time sensitivity is essential
contextual information, and mechanisms should be
designed to refresh outdated documents. In sum-
mary, the focus of optimizing indexed data should
be on clarity, context, and correctness to make the
system efficient and reliable. The following intro-
duces best practices.

2. Optimizing Index Structures: This can be
achieved by adjusting the size of the chunks, alter-
ing the index paths, and incorporating graph struc-
ture information. The method of adjusting chunks
(Small to Big) involves collecting as much relevant
context as possible and minimizing noise. When
constructing a RAG system, the chunk size is a key
parameter. There are different evaluation frame-
works comparing the size of individual chunks.
Llamalndex? uses GPT4 to assess fidelity and rele-

*https://www.llamaindex .ai



vance, and the LLaMA[Touvron et al., 2023] index
has an automatic evaluation feature for different
chunking methods. The method of querying across
multiple index paths is closely related to previous
metadata filtering and chunking methods, and may
involve querying across different indexes simulta-
neously. A standard index can be used to query spe-
cific queries, or a standalone index can be used to
search or filter based on metadata keywords, such
as a specific “date” index.

Introducing a graph structure involves transform-
ing entities into nodes and their relationships into
relations. This can improve accuracy by leverag-
ing the relationships between nodes, especially for
multi-hop questions. Using a graph data index can
increase the relevance of the retrieval.

3. Adding Metadata Information: The focus here
is to embed referenced metadata into chunks, such
as dates and purposes used for filtering. Adding
metadata like chapters and subsections of refer-
ences could also be beneficial for improving re-
trieval. When we divide the index into numerous
chunks, retrieval efficiency becomes a concern. Fil-
tering through metadata first can enhance efficiency
and relevance.

4. Alignment Optimization: This strategy primarily
addresses alignment issues and differences between
documents. The alignment concept involves intro-
ducing hypothetical questions, creating questions
which are suitable to answer with each document,
and embedding (or replacing) these questions with
the documents. This helps address alignment prob-
lems and discrepancies between documents.

5. Mixed Retrieval: The advantage of this strategy
lies in leveraging the strengths of different retrieval
technologies. Intelligently combining various tech-
niques, including keyword-based search, semantic
search, and vector search, adapts to different query
types and information needs, ensuring consistent
retrieval of the most relevant and context-rich in-
formation. Mixed retrieval can serve as a robust
complement to retrieval strategies, enhancing the
overall performance of the RAG pipeline.

Embedding

* Fine-turning Embedding: Fine-tuning embedding
models directly impacts the effectiveness of RAG. The
purpose of fine-tuning is to enhance the relevance be-
tween retrieved content and query. The role of fine-
tuning embedding is akin to adjusting ears before gener-
ating speech, optimizing the influence of retrieval con-
tent on the generated output. Generally, methods for
fine-tuning embedding fall into the categories of ad-
justing embedding in domain-specific contexts and op-
timizing retrieval steps. Especially in professional do-
mains dealing with evolving or rare terms, these cus-
tomized embedding methods can improve retrieval rel-
evance. The BGE[BAAI, 2023]lembedding model is a
fine-tunning and high-performance embedding model,

such as BGE-large-EN developed by the BAAI 3. To cre-
ate training data for fine-tuning the BGE model, start
by using LLMs like gpt-3.5-turbo to formulate ques-
tions based on document chunks, where questions and
answers (document chunks) form fine-tuning pairs for
the fine-tuning process.

* Dynamic Embedding: Dynamic embedding adjust
based on the context in which words appear, differing
from static embedding that use a single vector for each
word. For instance, in transformer models like BERT,
the same word can have varied embeddings depend-
ing on surrounding words. Evidence indicates unex-
pected high cosine similarity results, especially with text
lengths less than 5 tokens, in OpenATI’s text-embedding-
ada-002 model*. Ideally, embedding should encompass
as much context as possible to ensure “healthy” out-
comes.Built upon the principles of large language mod-
els like GPT, OpenAI’s embeddings-ada-02 is more so-
phisticated than static embedding models, capturing a
certain level of context. While it excels in contextual
understanding, it may not exhibit the same sensitivity to
context as the latest full-size language models like GPT-
4.

Post-Retrieval Process

After retrieving valuable context from the database, merg-
ing it with the query for input into LLM poses challenges.
Presenting all relevant documents to the LLM at once may
exceed the context window limit. Concatenating numerous
documents to form a lengthy retrieval prompt is ineffective,
introducing noise and hindering the LLM’s focus on crucial
information. Additional processing of the retrieved content is
necessary to address these issues.

* ReRank: Re-ranking to relocate the most relevant in-
formation to the edges of the prompt is a straightfor-
ward idea. This concept has been implemented in frame-
works such as Llamalndex, LangChain, and HayStack
[Blagojevi, 2023]. For instance, Diversity Ranker pri-
oritizes reordering based on document diversity, while
LostInTheMiddleRanker alternates placing the best doc-
ument at the beginning and end of the context window.
Simultaneously, addressing the challenge of interpreting
vector-based simulated searches for semantic similarity,
approaches like cohereAl rerank [Cohere, 2023], bge-
rerank®, or LongLLMLingua [Jiang et al., 2023a] recal-
culate the semantic similarity between relevant text and
query.

e Prompt Compression Research indicates that noise
in retrieved documents adversely affects RAG perfor-
mance. In post-processing, the emphasis lies in com-
pressing irrelevant context, highlighting pivotal para-
graphs, and reducing the overall context length. Ap-
proaches such as Selective Context[Litman e al., 2020]
and LLMLingua [Anderson er al., 2022]utilize small

3https://huggingface.co/BAAI/bge-large-en
“https://platform.openai.com/docs/guides/embeddings
Shttps://huggingface.co/BAAl/bge-reranker-large
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language models to calculate prompt mutual in-
formation or perplexity, estimating element impor-
tance. However, these methods may lose key in-
formation in RAG or long-context scenarios. Re-
comp [Xu et al., 2023aladdresses this by training com-
pressors at different granularities.  Long Context
[Xu et al., 2023b], in dealing with extensive contexts,
decomposes and compresses, while “Walking in the
Memory Maze” [Chen et al., 2023aldesigns a hierarchi-
cal summarization tree to enhance LLM’s key informa-
tion perception.

RAG Pipeline Optimization

The optimization of the retrieval process aims to enhance the
efficiency and information quality of RAG systems, Current
research primarily focuses on intelligently combining various
search technologies, optimizing retrieval steps, introducing
the concept of cognitive backtracking, flexibly applying di-
verse query strategies, and leveraging embedding similarity.
These efforts collectively strive to achieve a balance between
efficiency and the richness of contextual information in RAG
retrieval.

* Exploring Hybrid Search: By intelligently blending
various techniques such as keyword-based search, se-
mantic search, and vector search, the RAG system can
leverage the strengths of each method. This approach
enables the RAG system to adapt to different query types
and information needs, ensuring consistent retrieval of
the most relevant and context-rich information. Hybrid
search serves as a robust complement to retrieval strate-
gies, enhancing the overall performance of the RAG
pipeline.

* Recursive Retrieval and Query Engine: Another pow-
erful method to optimize retrieval in the RAG system
involves implementing recursive retrieval and a sophis-
ticated query engine. Recursive retrieval entails acquir-
ing smaller document blocks during the initial retrieval
phase to capture key semantic meanings. In the later
stages of this process, larger blocks with more contex-
tual information are provided to the language model
(LM). This two-step retrieval method helps strike a bal-
ance between efficiency and contextually rich responses.

¢ StepBack-prompt: Integrated into the RAG process,
the StepBack-prompt approach[Zheng et al., 2023] en-
courages LLM to step back from specific instances and
engage in reasoning about the underlying general con-
cepts or principles. Experimental findings indicate a sig-
nificant performance improvement in various challeng-
ing, inference-intensive tasks with the incorporation of
backward prompts, showcasing its natural adaptability
to RAG. The retrieval-enhancing steps can be applied in
both the generation of answers to backward prompts and
the final question-answering process.

* Subqueries: Various query strategies can be employed in
different scenarios, including using query engines pro-
vided by frameworks like Llamalndex, employing tree
queries, utilizing vector queries, or employing the most
basic sequential querying of chunks.

* HyDE: This approach is grounded on the assumption
that the generated answers may be closer in the embed-
ding space than a direct query. Utilizing LLM, HyDE
generates a hypothetical document (answer) in response
to a query, embeds the document, and employs this em-
bedding to retrieve real documents similar to the hypo-
thetical one. In contrast to seeking embedding similarity
based on the query, this method emphasizes the embed-
ding similarity from answer to answer. However, it may
not consistently yield favorable results, particularly in
instances where the language model is unfamiliar with
the discussed topic, potentially leading to an increased
generation of error-prone instances.

Modular RAG

The modular RAG structure breaks away from the traditional
Naive RAG framework of indexing, retrieval, and genera-
tion, offering greater diversity and flexibility in the over-
all process. On one hand, it integrates various methods to
expand functional modules, such as incorporating a search
module in similarity retrieval and applying a fine-tuning ap-
proach in the retriever[Lin et al., 2023]. Additionally, spe-
cific problems have led to the emergence of restructured
RAG modules [Yu et al., 2022] and iterative approaches like
[Shao et al., 2023]. The modular RAG paradigm is becom-
ing the mainstream in the RAG domain, allowing for ei-
ther a serialized pipeline or an end-to-end training approach
across multiple modules.The comparison between three RAG
paradigms is illustrated in Fig 3.
New Modules

e Search Module: Diverging from the similarity re-
trieval between queries and corpora in Naive/Advanced
RAG, the search module, tailored to specific sce-
narios, incorporates direct searches on (additional)
corpora in the process using LLM-generated code,
query languages (e.g., SQL, Cypher), or other cus-
tom tools. The data sources for searching can include
search engines, text data, tabular data, or knowledge
graphs[Wang et al., 2023c].

* Memory Module: Leveraging the memory capabili-
ties of LLM itself to guide retrieval, the principle in-
volves finding memories most similar to the current in-
put. Self-mem [Cheng et al., 2023bliteratively employs
a retrieval-enhanced generator to create an unbounded
memory pool, combining the “original question” and
“dual question.” A retrieval-enhanced generative model
can use its own outputs to enhance itself, making the
text closer to the data distribution in the reasoning pro-
cess, with the model’s own outputs rather than training
data[Wang er al., 2022a].

¢ Extra Generation Module: In retrieved content, re-
dundancy and noise are common issues. Instead of di-
rectly retrieving from a data source, the Extra Gener-
ation Module leverages LLM to generate the required
context[Yu et al., 2022]. Content generated by LLM is
more likely to contain relevant information compared to
direct retrieval.
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Figure 3: Comparison between the three paradigms of RAG

e Task Adaptable Module: Focused on trans-
forming RAG to adapt to various downstream
tasks, UPRISE(Cheng et al., 2023a] automati-

cally retrieves prompts for given zero-shot task

inputs from a pre-constructed data pool, en-
hancing universality across tasks and models.
PROMPTAGATORI[Dai et al., 2022]utilizes LLM

as a few-shot query generator and, based on the gener-
ated data, creates task-specific retrievers. Leveraging
the generalization capability of LLM, PROMPTAGA-
TOR enables the creation of task-specific end-to-end
retrievers with just a few examples.

Alignment Module: The alignment between queries
and texts has consistently been a critical issue influenc-
ing the effectiveness of RAG. In the era of Modular
RAG, researchers have discovered that adding a train-
able Adapter module to the retriever can effectively mit-
igate alignment issues. PRCA[Yang er al., 2023b] lever-
aged reinforcement learning to train a context adapter
driven by LLM rewards, positioned between the re-
triever and generator. It optimizes the retrieved in-
formation by maximizing rewards in the reinforcement
learning phase within the labeled autoregressive pol-
icy. AAR[Yu et al., 2023blproposed a universal plu-
gin that learns LM preferences from known-source
LLMs to assist unknown or non-co-finetuned LLMs.
RRR[Ma et al., 2023aldesigned a module for rewriting
queries based on reinforcement learning to align queries
with documents in the corpus.

e Validation Module: In real-world scenarios, it is not

always guaranteed that the retrieved information is reli-
able. Retrieving irrelevant data may lead to the occur-
rence of illusions in LLM. Therefore, an additional val-
idation module can be introduced after retrieving docu-
ments to assess the relevance between the retrieved doc-
uments and the query. This enhances the robustness of
RAGI[Yu et al., 2023al.

New Pattern

The organizational approach of Modular RAG is flexible,
allowing for the substitution or reconfiguration of modules
within the RAG process based on specific problem con-
texts. For Naive RAG, which consists of the two modules
of retrieval and generation ( referred as read or sythesis in
some literature), this framework offers adaptability and abun-
dance. Present research primarily explores two organizational
paradigms, involving the addition or replacement of modules,
as well as the adjustment of the organizational flow between
modules.

* Adding or Replacing Modules

The strategy of adding or replacing modules entails
maintaining the structure of Retrieval-Read while intro-
ducing additional modules to enhance specific function-
alities. RRR[Ma et al., 2023a] proposes the Rewrite-
Retrieve-Read process, utilizing LLM performance as a
reward in reinforcement learning for a rewritter module.
This allows the rewritter to adjust retrieval queries, im-
proving the downstream task performance of the reader.
Similarly, modules can be selectively replaced in ap-
proaches like Generate-Read[Yu et al., 2022], where the
LLM generation module replaces the retrieval module.



Recite-Read [Sun et al., 2022] transforms external re-
trieval into retrieval from model weights, initially hav-
ing LLM memorize task-relevant information and gener-
ate output for handling knowledge-intensive natural lan-
guage processing tasks.

Adjusting the Flow between Modules In the realm of
adjusting the flow between modules, there is an empha-
sis on enhancing interaction between language models
and retrieval models. DSP[Khattab et al., 2022] intro-
duces the Demonstrate-Search-predict framework, treat-
ing the context learning system as an explicit program
rather than a terminal task prompt to address knowledge-
intensive tasks. ITER-RETGEN [Shao et al., 2023]
utilizes generated content to guide retrieval, itera-
tively performing ‘“retrieval-enhanced generation” and
“generation-enhanced retrieval” in a Retrieve-Read-
Retrieve-Read flow. Self-RAG[Asai et al., 2023b] fol-
lows the decide-retrieve-reflect-read process, introduc-
ing a module for active judgment. This adaptive and
diverse approach allows for the dynamic organization of
modules within the Modular RAG framework.

4 Retriever

In the context of RAG, the "R” stands for retrieval, serving
the role in the RAG pipeline of retrieving the top-k relevant
documents from a vast knowledge base. However, crafting
a high-quality retriever is a non-trivial task. In this chapter,
we organize our discussions around three key questions: 1)
How to acquire accurate semantic representations? 2) How
to match the semantic spaces of queries and documents? 3)
How to align the output of the retriever with the preferences
of the Large Language Model ?

4.1 How to acquire accurate semantic
representations?

In RAG, semantic space is the multidimensional space where
query and Document are mapped. When we perform re-
trieval, it is measured within the semantic space. If the se-
mantic expression is not accurate, then its effect on RAG is
fatal, this section will introduce two methods to help us build
a accurate semantic space.

Chunk optimization
When processing external documents, the first step is chunk-
ing to obtain fine-grained features. Then the chunks are Em-
bedded. However, Embedding too large or too small text
chunks may not achieve good results. Therefore, finding the
optimal chunk size for the documents in the corpus is crucial
to ensure the accuracy and relevance of the search results.
When choosing a chunking strategy, important considera-
tions include: the characteristics of the content being indexed,
the embedding model used and its optimal block size, the ex-
pected length and complexity of user queries, and how the
retrieval results are used in a specific application. For exam-
ple, different chunking models should be selected for longer
or shorter content. Additionally, different embedding mod-
els perform differently at different block sizes; for example,
sentence-transformer is more suitable for single sentences,

while text-embedding-ada-002 is better for blocks containing
256 or 512 tokens. Furthermore, the length and complexity
of the user’s input question text, as well as the specific needs
of your application such as semantic search or Q&A, will all
affect the choice of chunking strategy. This might directly
correlate with the token limits of your chosen LLM, and may
require you to adjust the block size. In fact, accurate query
results are achieved by adaptively applying several chunking
strategies; there is no best, only most suitable.

Current research in RAG employs diverse block optimiza-
tion methods to improve retrieval efficiency and accuracy.
Techniques such as sliding window technology implement
layered retrieval by aggregating globally related information
through multiple retrievals. The Small2big technique uti-
lizes small text blocks during the search process and provides
larger affiliated text blocks to the language model for pro-
cessing. The Abstract embedding technique performs Top K
retrieval on document abstracts, offering full document con-
text. The Metadata Filtering technique leverages document
metadata for filtering. The Graph Indexing technique con-
verts entities and relationships into nodes and connections,
significantly enhancing relevance in the context of multi-hop
issues. The amalgamation of these methods has resulted in
improved retrieval outcomes and enhanced performance for
RAG.

Fine-tuning Embedding Models

After getting the proper size of Chunks, we need to Em-
bedding the chunks and query in the semantic space by an
Embedding model, so it is crucial whether Embedding can
represent the corpus effectively. Nowadays, excellent Em-
bedding models have appeared, such as [UAE[AnglE, 2023],
Voyage[VoyageAl, 2023], BGE[BAALI, 2023], etc.], they
have been pre-trained on large-scale corpus, but they may
not accurately represent domain-specific corpus information
when applied to specific domains. Furthermore, task-specific
fine-tuning of Embedding models is critical to ensure that
the model understands the user query in relation to the con-
tent relevance, whereas an un-fine-tuned model may not be
able to fulfill the needs of a specific task. Thus, fine-tuning
an Embedding model is essential for downstream applica-
tions. There are two basic paradigms in Embedding fine-
tuning methods

Domain Knowledge Fine-tuning In order for an Embed-
ding model to correctly understand domain-specific informa-
tion, we need to construct domain-specific datasets to fine-
tune the Embedding model. However fine-tuning an Em-
bedding model is different from an ordinary language model,
mainly in that the datasets used are different. In the current
main method of fine-tuning Embedding models, the dataset
used consists of three parts, including Queries, Corpus and
Relevant Docs. The Embedding model looks up relevant doc-
uments in Corpus based on the Query, and then whether the
Relevant Docs of the query hit or not is used as a metric for
the model.

In the construction of datasets, fine-tuning models, and
evaluation, numerous challenges may arise in each of these
three components. In the Llamalndex [Liu, 20231, a series
of key classes and functions have been introduced specifi-



cally for the fine-tuning process of embedding models, signif-
icantly streamlining this procedure. By preparing a corpus of
domain knowledge and utilizing the methods it provides, we
can easily obtain the specialized embedding model tailored to
our desired domain.

Fine-tuning of downstream tasks It is equally im-
portant to adapt Embedding models to downstream tasks.
When using RAG in downstream tasks, some works have
fine-tuned Embedding models by using the capabilities
of LLMs.PROMPTAGATORI(Dai et al., 2022] utilizes the
Large Language Model (LLM) as a few-shot query gener-
ator and creates task-specific retrievers based on the gen-
erated data, and alleviates the problem of supervised fine-
tuning, which is difficult in some domains due to data
scarcity. LLM-Embedder[Zhang ef al., 2023aluses the Large
Language Model to output reward values for data from mul-
tiple downstream tasks, fine-tuning the retriever with two dif-
ferent supervised signals via hard labeling of the dataset and
the soft reward derived from LLM.

This somewhat improves the semantic representation
through both domain knowledge injection and downstream
task fine-tuning. However, the retrievers trained by this ap-
proach are not intuitively helpful for large language models,
so some work has been done to supervise the fine-tuning of
Embedding models directly through feedback signals from
the LLM. (This section will be presented in 4.4)

4.2 How to Match the Semantic Space of Queries
and Documents

In the RAG application, some retrievers use the same embed-
ding model to encode the query and doc, while others use two
models to separately encode the query and doc. Moreover, the
original query of the user may have problems of poor expres-
sion and lack of semantic information. Therefore, aligning
the semantic space of the user’s query and documents is very
necessary. This section introduces two key technologies to
achieve this goal.

Query Rewrite

The most intuitive way to align the semantics of
query and document is to rewrite the query. As
mentioned in Query2Doc[Wang et al., 2023b] and ITER-
RETGEN(Shao et al., 2023], the inherent capabilities of
large language models are utilized to generate a pseudo-
document by guiding it, and then the original query is
merged with this pseudo-document to form a new query.
In HyDE[Gao et al., 20221, query vectors are established
through the use of text indicators, using these indicators to
generate a “hypothetical’ document that is relevant, yet may
not truly exist, it only needs to capture the relevant pattern.
RRR[Ma et al., 2023alintroduced a new framework that in-
verts the order of retrieval and reading, focusing on query
rewriting. This method generates a query using a large lan-
guage model, then uses a web search engine to retrieve con-
text, and finally uses a small language model as a train-
ing rewriter to serve the frozen large language model. The
STEP-BACKPROMPTINGIZheng et al., 2023] method can
make large language models carry out abstract reasoning, ex-
tract high-level concepts and principles, and conduct retrieval

based on this. Lastly, the method in Multi Query Retrieval
involves using large language models to generate multiple
search queries, these queries can be executed in parallel, and
the retrieval results are input together, which is very useful
for single problems that rely on multiple sub-problems

Embedding Transformation

If there is a coarse-grained method like rewriting queries,
there should also be a finer-grained implementation spe-
cific for embedding operations. In Llamalndex[Liu, 2023],
it is possible to connect an adapter after the query en-
coder, and fine-tune the adapter to optimize the represen-
tation of query embeddings, mapping it to a latent space
that is better suited for specific tasks.When the data struc-
ture of a query and an external document are different, such
as an unstructured query and a structured external docu-
ment, it is very important to enable the query to align with
the document.SANTAILI et al., 2023d] proposes two pre-
training methods to make the retriever aware of structured
information 1) Using the natural alignment relationship be-
tween structured data and unstructured data for contrastive
learning for structured-aware pre-training. 2) Masked Entity
Prediction, which designs an entity-oriented mask strategy
and asks language models to fill in the masked entities.

4.3 How to Aligning Retriever’s Output and
LLM’s Preference

In the RAG pipeline, even if we employ the above techniques
to enhance the retrieval hit rate, it may still not improve the
final effect of RAG, because the retrieved documents may not
be what LLM needs. Thus, this section introduces two meth-
ods to align the outputs of the retriever and the preferences of
the LLM.

LLM supervised training Many works leverage various
feedback signals from large language models to fine-tune em-
bedding models. AARI[Yu et al., 2023b] provides supervi-
sory signals for a pre-trained retriever through an encoder-
decoder architecture LM. By determining the LM’s preferred
documents through FiD cross-attention scores, the retriever
is then fine-tuned with hard negative sampling and standard
cross-entropy loss. Ultimately, the fine-tuned retriever can
directly be used to enhance unseen target LMs, thereby per-
forming better in the target task. The training loss of retriever
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where D®" is the documents preferred by the LLM in the

retrieved set and D  is not preferred. [ is the standard cross
entropy loss. In the end,it is suggested that LLMs may have a
preference for focusing on readable rather than information-
rich documents

REPLUGIShi et al., 2023] uses a retriever and an LLM to
calculate the probability distributions of the retrieved docu-
ments, and then performs supervised training by calculating
the KL divergence. This simple and effective training method
enhances the performance of the retrieval model by using an
LM as the supervisory signal, eliminating the need for any



specific cross-attention mechanisms. The training loss of the
retriever is as follows:

(=5 Y KL(Pr(da) ||Qcy (dz,y) ()
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where D is a set of input contexts, Pris the retrieval like-
lihood, @1, is the LM likelihood of each document.

UPRISE[Cheng et al., 2023a] also employs frozen large
language models to fine-tune the Prompt Retriever. But
both the language model and the retriever take Prompt-Input
Pairs as inputs, then uses the scores given by the large lan-
guage model to supervise the training of the retriever, equiva-
lent to using the large language model to label the dataset.
Atlas[Izacard et al., 2022] proposes four methods of fine-
tuning supervised embedding models, among them, Attention
Distillation distills using the cross-attention scores that the
language model generates during the output. EMDR2 em-
ploys the Expectation-Maximization algorithm to train with
the retrieved documents as latent variables. Perplexity Dis-
tillation directly trains using the perplexity of the model-
generated tokens as an indicator. LOOP introduces a new loss
function based on the effect of document deletion on LM
prediction, providing an effective training strategy for better
adapting the model to specific tasks.

Plug in an adapter However, fine-tuning an embed-
ding model can be challenging due to factors such as
utilizing an API to implement embedding functionality
or insufficient local computational resources. There-
fore, some works choose to externally attach an adapter
for alignment.PRCA[Yang et al., 2023b] trains the Adapter
through the Contextual Extraction Stage and the Reward-
Driven Stage, and optimizes the output of the re-
triever based on a token-based autoregressive strategy.
TokenFiltering[Berchansky et al., 2023] method calculates
cross-attention scores, selecting the highest scoring input to-
kens to effectively filter tokens. RECOMP[Xu et al., 2023a]
proposes extractive and generative compressors, which gen-
erate summaries by selecting relevant sentences or syn-
thesizing document information to achieve multi-document
query focus summaries.In addition to that, a novel approach,
PKGILuo et al., 2023], infuses knowledge into a white-box
model through directive fine-tuning, and directly replaces the
retriever module, used to directly output relevant documents
based on the query.

5 Generator

Another core component in RAG is the generator, responsible
for transforming retrieved information into natural and fluent
text. Its design is inspired by traditional language models,
but in comparison to conventional generative models, RAG’s
generator enhances accuracy and relevance by leveraging the
retrieved information. In RAG, the generator’s input includes
not only traditional contextual information but also relevant
text segments obtained through the retriever. This allows the
generator to better comprehend the context behind the ques-
tion and produce responses that are more information-rich.
Furthermore, the generator is guided by the retrieved text to

ensure consistency between the generated content and the re-
trieved information. It is the diversity of input data that has
led to a series of targeted efforts during the generation phase,
all aimed at better adapting the large model to the input data
from queries and documents. We will delve into the intro-
duction of the generator through aspects of post-retrieval pro-
cessing and fine-tuning.

5.1 How Can Retrieval Results be Enhanced via
Post-retrieval Processing?

In terms of untuned large language models, most studies
rely on well-recognized large language models like GPT-
4[OpenAl, 2023] to leverage their robust internal knowl-
edge for the comprehensive retrieval of document knowledge.
However, inherent issues of these large models, such as con-
text length restrictions and vulnerability to redundant infor-
mation, persist. To mitigate these issues, some research has
made efforts in post-retrieval processing. Post-retrieval pro-
cessing refers to the process of further treating, filtering, or
optimizing the relevant information retrieved by the retriever
from a large document database. Its primary purpose is to en-
hance the quality of retrieval results to better meet user needs
or for subsequent tasks. It can be understood as a process of
reprocessing the documents obtained in the retrieval phase.
The operations of post-retrieval processing usually involve in-
formation compression and result rerank.

Information Compression

Even though the retriever can fetch relevant information from
a vast knowledge base, we are still confronted with the chal-
lenge of dealing with a substantial amount of information in
retrieval documents. Some existing research attempts to solve
this problem by increasing the context length of large lan-
guage models, but current large models still confront context
limitations. Thus, in certain situations, information conden-
sation is necessary. In short, the importance of information
condensation mainly embodies in the following aspects: re-
duction of noise, coping with context length restrictions, and
enhancing generation effects.

PRCA [Yang er al., 2023b] addressed this issue by train-
ing an information extractor. In the context extraction stage,
given an input text Sjyp.¢, it can generate an output sequence
Ceztracted> Which represents the condensed context from the
input document. The objective of the training process is to
minimize the discrepancy between Ceytrqcteq and the actual
context Cy¢p, as much as possible. The loss function they
adopted is as follows:

minL(0) = -~ Z C’;Lthlog (Sz(nput; 0)) 3)
where f is the 1nf0rmat10n extractor and 6 is the parameter
of the extractor. RECOMP[Xu et al., 2023a] similarly trains
an information condenser by leveraging contrastive learning.
For each training data point, there exists one positive sample
and five negative samples. The encoder is trained using con-
trastive loss [Karpukhin et al., 2020] during this process.The
specific optimization goals are as follows:
l esim(zi,pi)
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where z; is the training data, p; is the positive sample, and
n; is the negative sample,sim(x,y) is to calculate the simi-
larity between x and y. Another study has chosen to further
streamline the quantity of documents, aiming to enhance the
model’s answer accuracy by reducing the number of retrieved
documents. [Ma et al., 2023b] proposed the “Filter-Ranker”
paradigm, which integrates the strengths of Large Language
Models (LLMs) and Small Language Models (SLMs). In this
paradigm, SLMs serve as filters, while LLMs function as re-
ordering agents. By prompting LLMs to rearrange portions
of difficult samples identified by SLMs, the research results
indicate significant improvements across various Information
Extraction (IE) tasks.

Rerank

The pivotal role of the reordering model lies in optimizing
the set of documents retrieved from retriever. LLMs ex-
perience performance degradation with retrospective perfor-
mance when additional context is added, and reordering pro-
vides an effective solution to address this issue. The core idea
involves rearranging document records to place the most rel-
evant items at the top, thereby reducing the total number of
documents to a fixed quantity. This not only resolves the issue
of context window expansion that may be encountered during
retrieval but also contributes to improving retrieval efficiency
and responsiveness[Zhuang er al., 2023].

Introducing context compression as part of the reordering
aims to return relevant information solely based on the given
query context. The dual significance of this approach lies in
concentrating the display of the most relevant information in
the retrieval results by reducing the content of individual doc-
uments and filtering entire documents. Thus, the reordering
model plays an optimizing and refining role throughout the
information retrieval process, providing more effective and
accurate inputs for subsequent LLM processing.

5.2 How to Optimize a Generator to Adapt Input
Data?

In the RAG model, the optimization of the generator is a cru-
cial component of the architecture. The generator’s task is
to take the retrieved information and generate relevant text,
thereby providing the final output of the model. The goal of
optimizing the generator is to ensure that the generated text is
both natural and effectively utilizes the retrieved documents,
in order to better satisfy the user’s query needs.

In typical Large Language Model (LLM) generation tasks,
the input is usually a query. In RAG, the main difference
lies in the fact that the input includes not only a query
but also various documents retrieved by the retriever (struc-
tured/unstructured). The introduction of additional informa-
tion may have a significant impact on the model’s understand-
ing, especially for smaller models. In such scenarios, fine-
tuning the model to adapt to the input of query + retrieved
documents becomes particularly important. Specifically, be-
fore providing the input to the fine-tuned model, there is usu-
ally post-retrieval processing of the documents retrieved by
the retriever. It is essential to note that the method of fine-
tuning the generator in RAG is essentially similar to the gen-
eral fine-tuning approach for LLMs. Here, we will briefly

introduce some representative works, including data (format-
ted/unformatted) and optimization functions.

General Optimization Process

Refers to the training data containing pairs of (input, output),
aiming to train the model’s ability to generate output y given
input x. In the work of Self-mem[Cheng et al., 2023b], a
relatively classical training process is employed. Given in-
put x, relevant documents z are retrieved (selecting Top-1
in the paper), and after integrating (x, z), the model gener-
ates output y. The paper utilizes two common paradigms
for fine-tuning, namely Joint-Encoder [Arora et al., 2023,
Wang er al., 2022b, Lewis et al., 2020] and Dual-Encoder
[Xia et al., 2019, Cai et al., 2021, Cheng et al., 2022]. For
Joint-Encoder, a standard model based on encoder-decoder
is used, where the encoder initially encodes the input, and
the decoder, through attention mechanisms, combines the en-
coded results to generate tokens in an autoregressive manner:

H = Encoder(z[SEP]m) %)
h' = Decoder(CrossAttn(H),y < i) (6)
Po (|z,y <i) = Softmaz(h?) (7

For the Dual-Encoder, the system establishes two indepen-
dent encoders, each responsible for encoding the input (query,
context) and the document, respectively. The output is then
subject to bidirectional cross-attention processing by the de-
coder in sequence. The authors choose to use the Transformer
[Vaswani et al., 2017] as the building block for both architec-
tures and optimize G'¢ Negative Log-Likelihood (NLL) loss.

H, = SourceEncoder(x)H,, = MemoryEncoder(x)
®)

h' = Decoder(CrossAttn(H,, H,,),y < 1) )

]
Lou=—Y_logPa,(yilz,m,y <t) (10)

t=1

Utilizing Contrastive Learning

In the phase of preparing training data, usually generated
are pairs of interactions between inputs and outputs. Un-
der this circumstance, the model can only access a unique
real output which might induce the “exposure bias” prob-
lem [Ranzato et al., 2015]: during the training phase, the
model only exposes to a single true feedback without ac-
cessing any other generated tokens. This can impair the
model’s performance in application as it might excessively
fit to specific feedback in the training data without effec-
tively generalizing to other scenarios. Therefore, a graph-text
contrastive learning method has been proposed by SURGE
[Kang et al., 2023]. For any given pair of interactions be-
tween inputs and outputs, the objective of this contrastive
learning approach can be defined as follows:

esim(C(2).EM) /e ] esim(C(2).£(h)) /1
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Where (,¢ are learnable linear projection layers.z is the av-
erage representations of the graph from Encoder,h is the mean
of decoder representations.z’,h’ represent the corresponding
negative samples respectively. In the given text, ’h” and
’z” represent negative samples. By introducing a contrastive
learning objective, the model can learn to generate diverse
and reasonable replies better, rather than just the one seen in
the training data. This helps to mitigate the risk of overfitting
and improves the model’s generalization ability in real-world
scenarios.

When dealing with retrieval tasks that involve structured
data, the work of SANTAILI et al., 2023d] utilized a three-
stage training process to fully understand the structural and
semantic information. Specifically, in the training phase
of the retriever, contrastive learning was adopted, with the
main goal of optimizing the embedding representations of the
queries and documents. The specific optimization objectives
are as follows:

eSim(Q7d+)
T @d) 3 esim(ad )

where q and d are the query and document encoded by the
encoder.d~,d* represent negative samples and positive sam-
ples respectively. In the initial training stage of the gener-
ator, we utilize contrastive learning to align structured data
and the corresponding document description of unstructured
data. The optimization objective is as above.

Moreover, in the later training stage of the gener-
ator, inspired by references [Sciavolino et al., 2021,
Zhang et al., 20191, we recognized the remarkable ef-
fectiveness of entity semantics in learning textual data
representations in retrieval. Thus, we first perform entity
identification in the structured data, subsequently applying
a mask to the entities in the input section of the generator’s
training data, enabling the generator to predict these masks.
The optimization objective hereafter is:

»QDR = —log (12)

k
Supp =Y —logP(Ya(t;)| X7, Yy(ty, ..., j — 1))

j=1
13)
where Y, (y; denotes the j-th token in the sequence Y.
And Y; = < mask >1, entq, ..., < mask >,, ent, de-
notes the ground truth sequence that contains masked enti-
ties. Throughout the training process, we recover the masked
entities by acquiring necessary information from the context,
understand the structural semantics of textual data, and align
the relevant entities in the structured data. We optimize the
language model to fill the concealed spans and to better com-
prehend the entity semantics[Ye et al., 2020].

6 Augmentation in RAG

This chapter is primarily organized into three dimensions: the
stage of augmentation, augmentation data sources, and the
process of augmentation, to elaborate on the key technolo-
gies in the development of RAG.Taxonomy of RAG’s Core
Components is illustrated in Fig 4.

6.1 RAG in Augmentation Stages

As a knowledge-intensive task, RAG employs different tech-
nical approaches during the language model training’s pre-
training, fine-tuning, and inference stages.

Pre-training Stage

Since the emergence of pre-trained models, researchers have
delved into enhancing the performance of Pre-trained Lan-
guage Models (PTMs) in open-domain Question Answering
(QA) through retrieval methods at the pre-training stage. Rec-
ognizing and expanding implicit knowledge in pre-trained
models can be challenging. REALM[Arora ef al., 2023] in-
troduces a more modular and interpretable knowledge em-
bedding approach. Following the Masked Language Model
(MLM) paradigm, REALM models both pre-training and
fine-tuning as a retrieve-then-predict process, where the lan-
guage model pre-trains by predicting masked tokens y based
on masked sentences x, modeling P(z|y).

RETRO[Borgeaud ef al., 2022]leverages retrieval aug-
mentation for pre-training a self-regressive language model,
enabling large-scale pre-training from scratch by retrieving
from a massive set of labeled data and significantly reducing
model parameters. RETRO shares the backbone structure
with GPT models and introduces an additional RETRO
encoder to encode features of neighboring entities retrieved
from an external knowledge base. Additionally, RETRO
incorporates block-wise cross-attention layers in its decoder
transformer structure to effectively integrate retrieval infor-
mation from the RETRO encoder. RETRO achieves lower
perplexity than standard GPT models. Moreover, it provides
flexibility in updating knowledge stored in the language
models by updating the retrieval database without the need
for retraining the language models [Petroni e al., 2019].

Atla[Izacard et al., 2022]employs a similar approach, in-
corporating a retrieval mechanism using the T5 architecture
[Raffel et al., 2020]in both the pre-training and fine-tuning
stages. Prior to pre-training, it initializes the encoder-decoder
LM backbone with a pre-trained T5, and initializes the dense
retriever with a pre-trained Contriever. During the pre-
training process, it refreshes the asynchronous index every
1000 steps.

COG [Vaze et al., 2021]is a text generation model that for-
malizes its generation process by gradually copying text frag-
ments (such as words or phrases) from an existing collection
of text. Unlike traditional text generation models that select
words sequentially, COG utilizes efficient vector search tools
to calculate meaningful context representations of text frag-
ments and index them. Consequently, the text generation task
is decomposed into a series of copy and paste operations,
where at each time step, relevant text fragments are sought
from the text collection instead of selecting from an indepen-
dent vocabulary. COG demonstrates superior performance
to RETRO in various aspects, including question-answering,
domain adaptation, and expanded phrase indexing.

On the other hand, following the discovery of the scal-
ing law, there has been a rapid increase in model parameters,
making autoregressive models the mainstream. Researchers
are also exploring whether larger models can be pretrained
using the RAG approach. RETRO++[Wang et al., 2023al, an
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Figure 4: Taxonomy of RAG’s Core Components

extension of RETRO, increased the model’s parameter scale.
Studies have found consistent improvements in text genera-
tion quality, factual accuracy, low toxicity, and downstream
task accuracy, particularly in knowledge-intensive tasks such
as open-domain question answering. These research findings
highlight the promising direction of pretraining autoregres-
sive language models in conjunction with retrieval for future
foundational models.

In summary, the advantages and limitations of augmented
pre-training are evident. On the positive side, this approach
offers a more powerful foundational model, outperforming
standard GPT models in perplexity, text generation quality,
and downstream task performance. Moreover, it achieves
higher efficiency by utilizing fewer parameters compared to
purely pre-trained models. It particularly excels in handling
knowledge-intensive tasks, allowing the creation of domain-
specific models through training on domain-specific corpora.
However, there are drawbacks, including the requirement for
a substantial amount of pre-training data and larger training
resources, as well as the issue of slower update speeds. Espe-
cially as model size increases, the cost of retrieval-enhanced
training becomes relatively higher. Despite these limitations,
this method demonstrates notable characteristics in terms of
model robustness. Once trained, retrieval-enhanced models
based on pure pre-training eliminate the need for external li-

brary dependencies, enhancing both generation speed and op-
erational efficiency.

Fine-tuning Stage

During the downstream fine-tuning phase, researchers have
employed various methods to fine-tune retrievers and gener-
ators for improved information retrieval, primarily in open-
domain question-answering tasks. Concerning retriever fine-
tuning, REPIUGI[Shi er al., 2023] treats the language model
(LM) as a black box and enhances it through an adjustable re-
trieval model. By obtaining feedback from the black-box lan-
guage model through supervised signals, REPLUG improves
the initial retrieval model. UPRISE[Cheng et al., 2023al, on
the other hand, fine-tunes retrievers by creating a lightweight
and versatile retriever through fine-tuning on diverse task
sets.  This retriever can automatically provide retrieval
prompts for zero-shot tasks, showcasing its universality and
improved performance across tasks and models.
Simultaneously, methods for fine-tuning generators in-
clude Self-Mem[Cheng et al., 2023b], which fine-tunes the
generator through a memory pool of examples, and
Self-RAG[Asai et al., 2023b], which satisfies active re-
trieval needs by generating reflection tokens. The RA-
DIT[Lin et al., 2023] method fine-tunes both the generator
and retriever by maximizing the probability of correct an-



swers given a retrieval-enhanced directive. It updates the gen-
erator and retriever to minimize the semantic similarity be-
tween documents and queries, effectively leveraging relevant
background knowledge.

Additionally, SUGRE[Kang et al., 2023] introduces the
concept of contrastive learning. It conducts end-to-end fine-
tuning of both retriever and generator, ensuring highly de-
tailed text generation and retrieved subgraphs. Using a
context-aware subgraph retriever based on Graph Neural Net-
works (GNN), SURGE extracts relevant knowledge from a
knowledge graph corresponding to an ongoing conversation.
This ensures the generated responses faithfully reflect the re-
trieved knowledge. SURGE employs an invariant yet efficient
graph encoder and a graph-text contrastive learning objective
for this purpose.

In summary, the enhancement methods during the fine-
tuning phase exhibit several characteristics. Firstly, fine-
tuning both LLM and retriever allows better adaptation
to specific tasks, offering the flexibility to fine-tune ei-
ther one or both simultaneously, as seen in methods like
RePlug[Shi et al., 2023] and RA-DIT[Lin et al., 2023]. Sec-
ondly, the benefits of this fine-tuning extend to adapt-
ing to diverse downstream tasks, as demonstrated by
UPRISE[Cheng er al., 2023a], making the model more ver-
satile. Additionally, fine-tuning enables models to better ac-
commodate different data structures in various corpora, par-
ticularly advantageous for graph-structured corpora, as high-
lighted by the SUGRE method.

However, fine-tuning during this phase comes with limita-
tions, such as the need for datasets specifically prepared for
RAG fine-tuning and the requirement for substantial compu-
tational resources compared to the RAG during the inference
phase. Overall, during fine-tuning, researchers have the flexi-
bility to tailor models according to specific requirements and
data formats, reducing the resource consumption compared
to the pre-training phase while retaining the ability to adjust
the model’s output style.

Inference Stage

The integration of RAG methods with LLM has become a
prevalent research direction in the inference phase. Notably,
the research paradigm of Naive RAG relies on incorporating
retrieval content during the inference stage.

To overcome the limitations of Naive RAG, researchers
have introduced richer context in the RAG during the in-
ference phase. The DSP[Khattab et al., 2022] framework re-
lies on a complex pipeline that involves passing natural lan-
guage text between a frozen Language Model (LM) and a Re-
trieval Model (RM), providing the model with more informa-
tive context to enhance generation quality. PKG equips LLMs
with a knowledge-guided module that allows access to rele-
vant knowledge without altering the parameters of LLMs, en-
abling the model to perform more sophisticated tasks. Addi-
tionally, CREA-ICLI[Li er al., 2023b] leverages synchronous
retrieval of cross-lingual knowledge to assist in acquiring ad-
ditional information, while RECITE forms context by sam-
pling one or more paragraphs from LLMs.

During the inference phase, optimizing the process of RAG
can benefit adaptation to more challenging tasks. For ex-

ample, ITRG[Feng et al., 2023a] enhances adaptability for
tasks requiring multiple-step reasoning by iteratively retriev-
ing and searching for the correct reasoning path. ITER-
RETGEN([Shao er al., 2023] employs an iterative approach
to coalesce retrieval and generation, achieving an alternating
process of “retrieval-enhanced generation” and “generation-
enhanced retrieval.”

On the other hand, IRCOT(Trivedi et al., 2022] merges the
concepts of RAG and CoT[Wei et al., 2022], employing al-
ternate CoT-guided retrievals and using retrieval results to
improve CoT. This method significantly improves the perfor-
mance of GPT-3 across various QA tasks, highlighting the
potential advantages of integrating retrieval and generation.

In summary, inference-stage enhancement methods offer
the advantages of being lightweight, cost-effective, requir-
ing no additional training, and utilizing powerful pre-trained
models. The main strength lies in freezing the parameters
of the LLMs during fine-tuning, focusing on providing con-
text that better suits the requirements, with the characteristics
of being fast and low-cost. However, this approach also has
some limitations, including the need for additional data pro-
cessing and process optimization, while being constrained by
the foundation model’s capabilities. Typically, this method
is often combined with process optimization techniques such
as step-wise reasoning , iterative reasoning, and adaptive re-
trieval to better meet the requirements of different tasks.

6.2 Augmentation Data Source

Data source is crucial factors for RAG effectiveness. Vari-
ous data sources offer distinct granularities and dimensions
of knowledge, requiring different processing methods. They
primarily fall into three categories: unstructured data, struc-
tured data, and content generated by LLMs.

Augmented with Unstructured Data

Unstructured data mainly encompasses textual data , typi-
cally derived from pure text corpora. Additionally, other text
data can serve as retrieval sources, such as Prompt data used
for large model fine-tuning[Cheng er al., 2023a] and cross-
language datalLi et al., 2023b].

In terms of text granularity, beyond the common
chunks (including sentences), the retrieval unit can be to-
kens (e.g., KNN-LM[Khandelwal er al., 2019]), phrases (e.g.,
NPMILee et al., 2020], COG[Vaze et al., 2021]), and docu-
ment paragraphs. Finer-grained retrieval units can often bet-
ter handle rare patterns and out-of-domain scenarios but come
with an increase in retrieval costs.

At the word level, FLARE employs an active retrieval strat-
egy, conducting retrieval only when the LM generates low-
probability words. The method involves generating a tempo-
rary next sentence for retrieval of relevant documents, then
re-generating the next sentence under the condition of the re-
trieved documents to predict subsequent sentences.

At the chunk level, RETRO uses the previous chunk to re-
trieve the nearest neighboring chunk and integrates this infor-
mation with the contextual information of the previous chunk
to guide the generation of the next chunk. RETRO achieves
this by retrieving the nearest neighboring block N(C;_1)
from the retrieval database, then fusing the contextual in-



formation of the preceding blocks (C4,...,C;_1) and the
retrieval information of N(C;_1) through cross-attention to
guide the generation of the next block ;. To maintain causal-
ity, the autoregressive generation of the i-th block C; can only
use the nearest neighbor of the previous block N(C;_1) and
not N (C;).

Augmented with Structured Data
Structured data sources like Knowledge Graphs (KG) are
gradually integrated into the paradigm of RAG. Verified KGs
can offer higher-quality context, reducing the likelihood of
model hallucinations.

RET-LLM [Modarressi et al., 2023] constructs a per-

sonalized knowledge graph memory by extracting
relation triples from past dialogues for future use.
SUGREI[Kang et al., 2023] embeds relevant subgraphs

retrieved from the knowledge graph using Graph Neural
Networks (GNN) to prevent the model from generating
contextually irrelevant replies. SUGRE[Kang et al., 2023]
employs a graph encoding method that reflects the graph
structure into PTMs’ representation space and utilizes a
multi-modal contrastive learning objective between graph-
text modes to ensure consistency between retrieved facts
and generated text. KnowledgeGPT[Wang e al., 2023c]
generates search queries for Knowledge Bases (KB) in code
format and includes predefined KB operation functions.
Apart from retrieval, KnowledgeGPT also offers the ca-
pability to store knowledge in a personalized knowledge
base to meet individual user needs. These structured data
sources provide RAG with richer knowledge and context,
contributing to improved model performance.

LLM Generated Content RAG

Observing that the auxiliary information recalled by RAG
is not always effective and may even have negative effects,
some studies have expanded the paradigm of RAG by delving
deeper into the internal knowledge of LLM. This approach
utilizes the content generated by LLM itself for retrieval, aim-
ing to enhance performance in downstream tasks. The follow-
ing outlines notable studies within this category:

SKR[Wang er al., 2023d] employs a labeled training set,
categorizing questions that the model can directly answer
as known and those requiring retrieval enhancement as un-
known. The model is trained to discern whether a question is
known, applying retrieval enhancement only to inputs identi-
fied as unknown, while directly answering the rest.

GenRead[Yu er al., 2022] substitutes the LLM generator
for the retriever. Experimental results indicate that situations
where the generated context document contains correct an-
swers are more prevalent than those retrieved by Naive RAG.
The generated answers also demonstrate superior quality. The
authors attribute this to the alignment between the task of gen-
erating document-level context and the pre-training objective
of causal language modeling, allowing for better utilization
of world knowledge stored in the model parameters.

Selfmem[Cheng et al., 2023b] iteratively uses a retrieval-
enhanced generator to create an unbounded memory pool. A
memory selector is employed to choose an output as the mem-
ory for subsequent generations. This output serves as the dual
problem to the original question. By combining the original

and dual problems, a retrieval-enhanced generative model can
leverage its own output to enhance itself.

These diverse approaches showcase innovative strategies in
RAG retrieval enhancement, aiming to elevate model perfor-
mance and effectiveness.

6.3 Augmentation Process

Most RAG research typically only performs a single retrieval
and generation process. However, single retrievals may con-
tain redundant information, leading to a "lost in the mid-
dle” phenomenon|[Liu et al., 2023]. This redundant informa-
tion can obscure key information or contain information con-
trary to the real answer, negatively impacting the generation
effect[Yoran er al., 2023]. Additionally, the information ob-
tained from a single retrieval is limited in problems requiring
multi-step reasoning.

Current methods to optimize the retrieval process mainly
include iterative retrieval and adaptive retrieval. These allow
the model to iterate multiple times during the retrieval process
or adaptively adjust the retrieval process to better accommo-
date different tasks and scenarios.

Iterative Retrieval

Regularly collecting documents based on the original query
and generated text can provide additional materials for
LLMs[Borgeaud et al., 2022, Arora et al., 2023]. Providing
additional references in multiple iterative retrievals has im-
proved the robustness of subsequent answer generation.
However, this method may be semantically discontinuous and
potentially lead to the collection of noisy and useless infor-
mation, as it primarily relies on a sequence of n tokens to
separate the generated and retrieved documents.

Recursive retrieval and multi-hop retrieval are used for spe-
cific data scenarios. Recursive retrieval can first process data
through a structured index, then retrieve it level by level.
When retrieving hierarchically rich documents, a summary
can be made for each section in an entire document or long
PDF. A retrieval is then performed based on the summary.
After determining the document, a second retrieval is con-
ducted for the internal chunks, thus realizing recursive re-
trieval. Multi-hop retrieval is often used to further mine in-
formation in graph-structured data sources|Li et al., 2023c].

Some methods iterate the steps of retrieval and generation.
ITER-RETGEN [Shao ef al., 2023] collaboratively utilizes
“retrieval-enhanced generation” and “generation-enhanced
retrieval” for tasks requiring reproduction of information.
That is, the model uses the content needed to complete the
task to respond to the input task, and these target contents
serve as the information context for retrieving more relevant
knowledge. This helps to generate better responses in another
iteration.

IRCoTITrivedi et al., 2022] also explores retrieving docu-
ments for each generated sentence, introducing retrieval at
every step of the thought chain. It uses CoT to guide the re-
trieval and uses the retrieval results to improve CoT, ensuring
semantic completeness.

Adaptive Retrieval
Indeed, the RAG methods described in the previous two
sections follow a passive approach where retrieval is prior-



itized. This method, which involves querying related doc-
uments and inputting into a LLM based on context, may
lead to efficiency issues. Adaptive retrieval methods such
as those introduced by Flare[Jiang et al., 2023b] and Self-
RAGI(Asai et al., 2023b], optimize the RAG retrieval process,
enabling the LLM to actively judge the timing and content of
retrieval. This helps to improve the efficiency and relevance
of the information retrieved.

In fact, the way in which LLM actively uses tools and
makes judgments is not originated from RAG but has been
widely used in the agents of large models[Yang er al., 2023c,
Schick et al., 2023, Zhang, 2023]. The retrieval steps
of Graph-Toolformer[Zhang, 2023] are roughly divided
into: LLMs actively use the retriever, Self-Ask and
DSP[Khattab er al., 2022] try to use few-shot prompts to trig-
ger LLM search queries. When LLMs think it is necessary,
they can decide to search for a relevant query to collect the
necessary materials, similar to the tool call of the agent.

WebGPT[Nakano ef al., 2021] employs a reinforcement
learning framework to automatically train the GPT-3 model
to use a search engine for text generation. It uses special to-
kens to perform actions, including querying on a search en-
gine, scrolling rankings, and citing references. This allows
GPT-3 to leverage a search engine for text generation.

Flare[Jiang et al., 2023b], on the other hand, automates the
timing of retrieval and addresses the cost of periodic docu-
ment retrieval based on the probability of the generated text.
It uses probability as an indicator of LLMs’ confidence during
the generation process. When the probability of a term falls
below a predefined threshold, the information retrieval sys-
tem would retrieve references and removes terms with lower
probabilities. This approach is designed to handle situations
where LLMs might need additional knowledge.

Self-RAG[Asai et al., 2023b] introduces an important in-
novation called Reflection tokens. These special tokens are
generated to review the output and come in two types: Re-
trieve and Critic. The model can autonomously decide when
to retrieve paragraphs or use a set threshold to trigger re-
trieval. When retrieval is needed, the generator processes
multiple paragraphs simultaneously, performing fragment-
level beam search to obtain the best sequence. The scores for
each subdivision are updated using Critic scores, and these
weights can be adjusted during the inference process to cus-
tomize the model’s behavior. The Self-RAG framework also
allows the LLM to autonomously determine whether recall
is necessary, avoiding training additional classifiers or rely-
ing on NLI models. This enhances the model’s ability to au-
tonomously judge inputs and generate accurate answers.

7 RAG Evaluation

In exploring the development and optimization of RAG, ef-
fectively evaluating its performance has emerged as a central
issue. This chapter primarily discusses the methods of eval-
uation, key metrics for RAG, the abilities it should possess,
and some mainstream evaluation frameworks.

7.1 Evaluation Methods

There are primarily two approaches to evaluating the ef-
fectiveness of RAG: independent evaluation and end-to-end

evaluation[Liu, 2023].

Independent Evaluation
Independent evaluation includes assessing the retrieval mod-
ule and the generation (read/synthesis) module.

1. Retrieval Module

A suite of metrics that measure the effectiveness of sys-
tems (like search engines, recommendation systems, or
information retrieval systems) in ranking items accord-
ing to queries or tasks are commonly used to evaluate
the performance of the RAG retrieval module. Exam-
ples include Hit Rate, MRR, NDCG, Precision, etc.

2. Generation Module

The generation module here refers to the enhanced or
synthesized input formed by supplementing the retrieved
documents into the query, distinct from the final an-
swer/response generation, which is typically evaluated
end-to-end. The evaluation metrics for the generation
module mainly focus on context relevance, measuring
the relatedness of retrieved documents to the query ques-
tion.

End-to-End Evaluation

End-to-end evaluation assesses the final response gener-
ated by the RAG model for a given input, involving the
relevance and alignment of the model-generated answers
with the input query. From the perspective of content
generation goals, evaluation can be divided into unlabeled
and labeled content. Unlabeled content evaluation met-
rics include answer fidelity, answer relevance, harmless-
ness, etc., while labeled content evaluation metrics in-
clude Accuracy and EM. Additionally, from the perspec-
tive of evaluation methods, end-to-end evaluation can be di-
vided into manual evaluation and automated evaluation us-
ing LLMs. The above summarizes the general case of end-
to-end evaluation for RAG. Furthermore, specific evalua-
tion metrics are adopted based on the application of RAG
in particular domains, such as EM for question-answering
tasks[Borgeaud er al., 2022, Izacard et al., 2022], UniEval
and E-FI for summarization tasks[Jiang et al., 2023b], and
BLEU for machine translation[Zhong et al., 2022]. These
metrics help in understanding the performance of RAG in var-
ious specific application scenarios.

7.2 Key Metrics and Abilities

Existing research often lacks rigorous evaluation of the im-
pact of retrieval-augmented generation on different LLMs.
In most cases, the evaluaion of RAG’s application in vari-
ous downstream tasks and with different retrievers may yield
divergent results. However, some academic and engineering
practices have focused on general evaluation metrics for RAG
and the abilities required for its effective use. This section
primarily introduces key metrics for evaluating RAG’s effec-
tiveness and essential abilities for assessing its performance.

Key Metrics

Recent  OpenAl  report[Jarvis and Allard, 2023]  have
mentioned various techniques for optimizing large
language models (LLMs), including RAG and its



evaluation metrics. Additionally, the latest evalu-
ation frameworks like RAGASIEs efal.,2023] and
ARES[Saad-Falcon et al., 2023] also involve RAG eval-
uation metrics. Summarizing these works, three core metrics
are primarily focused on: Faithfulness of the answer, Answer
Relevance, and Context Relevance.

1. Faithfulness

This metric emphasizes that the answers generated by
the model must remain true to the given context, ensur-
ing that the answers are consistent with the context infor-
mation and do not deviate or contradict it. This aspect of
evaluation is vital for addressing illusions in large mod-
els.

2. Answer Relevance

This metric stresses that the generated answers need to
be directly related to the posed question.

3. Context Relevance

This metric demands that the retrieved contextual infor-
mation be as accurate and targeted as possible, avoid-
ing irrelevant content. After all, processing long texts
is costly for LLMs, and too much irrelevant information
can reduce the efficiency of LLMs in utilizing context.

The OpenAl report also mentioned "Context Recall” as
a supplementary metric, measuring the model’s abil-
ity to retrieve all relevant information needed to an-
swer a question. This metric reflects the search opti-
mization level of the RAG retrieval module. A low re-
call rate indicates a potential need for optimization of
the search functionality, such as introducing re-ranking
mechanisms or fine-tuning embeddings, to ensure more
relevant content retrieval.

Key abilities

The work of RGB[Chen et al., 2023b] analyzed the perfor-
mance of different large language models in terms of four
basic abilities required for RAG, including Noise Robust-
ness, Negative Rejection, Information Integration, and Coun-
terfactual Robustness, establishing a benchmark for retrieval-
augmented generation.RGB focuses on the following four
abilities:

1. Noise Robustness

This capability measures the model’s efficiency in han-
dling noisy documents, which are those related to the
question but do not contain useful information.

2. Negative Rejection

When documents retrieved by the model lack the knowl-
edge required to answer a question, the model should
correctly refuse to respond. In the test setting for neg-
ative rejection, external documents contain only noise.
Ideally, the LLM should issue a "lack of information” or
similar refusal signal.

3. Information Integration

This ability assesses whether the model can integrate
information from multiple documents to answer more
complex questions.

4. Counterfactual Robustness

This test aims to evaluate whether the model can iden-
tify and deal with known erroneous information in doc-
uments when receiving instructions about potential risks
in retrieved information. Counterfactual robustness tests
include questions that the LLM can answer directly, but
the related external documents contain factual errors.

7.3 Evaluation Frameworks

Recently, the LLM community has been exploring the use
of "LLMs as judge” for automatic assessment, with many
utilizing powerful LLMs (such as GPT-4) to evaluate their
own LLM applications outputs. Practices by Databricks us-
ing GPT-3.5 and GPT-4 as LLM judges to assess their chatbot
applications suggest that using LLMs as automatic evaluation
tools is effective[Leng et al., 2023]. They believe this method
can also efficiently and cost-effectively evaluate RAG-based
applications.

In the field of RAG evaluation frameworks, RAGAS and
ARES are relatively new. The core focus of these evaluations
is on three main metrics: Faithfulness of the answer, answer
relevance, and context relevance. Additionally, TruLens, an
open-source library proposed by the industry, also offers a
similar evaluation mode. These frameworks all use LLMs as
judges for evaluation. As TruLens is similar to RAGAS, this
chapter will specifically introduce RAGAS and ARES.

RAGAS

This framework considers the retrieval system’s ability to
identify relevant and key context paragraphs, the LLM’s abil-
ity to use these paragraphs faithfully, and the quality of
the generation itself. RAGAS is an evaluation framework
based on simple handwritten prompts, using these prompts
to measure the three aspects of quality - answer faithfulness,
answer relevance, and context relevance - in a fully auto-
mated manner. In the implementation and experimentation
of this framework, all prompts are evaluated using the gpt-
3.5-turbo-16k model, which is available through the OpenAl
API[Es et al., 2023].

Algorithm Principles

1. Assessing Answer Faithfulness: Decompose the answer
into individual statements using an LLM and verify
whether each statement is consistent with the context.
Ultimately, a “’Faithfulness Score” is calculated by com-
paring the number of supported statements to the total
number of statements.

2. Assessing Answer Relevance: Generate potential ques-
tions using an LLLM and calculate the similarity between
these questions and the original question. The Answer
Relevance Score is derived by calculating the average
similarity of all generated questions to the original ques-
tion.

3. Assessing Context Relevance: Extract sentences directly
relevant to the question using an LLM, and use the ratio
of these sentences to the total number of sentences in the
context as the Context Relevance Score.



ARES

ARES aims to automatically evaluate the performance of
RAG systems in three aspects: Context Relevance, Answer
Faithfulness, and Answer Relevance. These evaluation met-
rics are similar to those in RAGAS. However, RAGAS, being
a newer evaluation framework based on simple handwritten
prompts, has limited adaptability to new RAG evaluation set-
tings, which is one of the significances of the ARES work.
Furthermore, as demonstrated in its assessments, ARES per-
forms significantly lower than RAGAS.

ARES reduces the cost of evaluation by using a small
amount of manually annotated data and synthetic data,
and utilizes Predictive-Driven Reasoning (PDR) to provide
statistical confidence intervals, enhancing the accuracy of
evaluation[Saad-Falcon et al., 2023].

Algorithm Principles

1. Generating Synthetic Dataset: ARES initially generates
synthetic questions and answers from documents in the
target corpus using a language model to create positive
and negative samples.

2. Preparing LLM Judges: Next, ARES fine-tunes
lightweight language models using the synthetic dataset
to train them to evaluate Context Relevance, Answer
Faithfulness, and Answer Relevance.

3. Ranking RAG Systems Using Confidence Intervals: Fi-
nally, ARES applies these judge models to score RAG
systems and combines them with a manually annotated
validation set using the PPI method to generate confi-
dence intervals, reliably estimating the performance of
RAG systems.

8 Future Prospects

In this chapter, we delve into three future prospects for
RAG, namely vertical optimization, horizontal expansion and
ecosystem of RAG.

8.1 Vertical Optimization of RAG

Despite the rapid advancements in RAG technology over the
past year, there are still several areas in its vertical domain
that require further investigation.

Firstly, the issue of long context in RAG is a significant
challenge. As mentioned in the literature [Xu et al., 2023c],
RAG’s generation phase is constrained by the context win-
dow of LLMs. If the window is too short, it may not contain
enough relevant information; if it’s too long, it might lead to
information loss. Currently, expanding the context window
of LLMs, even to the extent of limitless context, is a critical
direction in LLM development. However, once the context
window constraint is removed, how RAG should adapt re-
mains a noteworthy question.

Secondly, the robustness of RAG is another important re-
search focus. If irrelevant noise appears during retrieval, or
if the retrieved content contradicts facts, it can significantly
impact RAG’s effectiveness. This situation is figuratively
referred to as “opening a book to a poisonous mushroom”.
Therefore, enhancing the robustness of RAG has increasingly

gained researchers’ attention, as represented in studies such
as [Yu et al., 2023a, Glass et al., 2021, Baek et al., 2023].

Thirdly, the issue of RAG and Fine-tuning’s synergy is
also a primary research point. Hybrid has gradually become
one of the mainstream methods in RAG, exemplified by RA-
DIT [Lin er al., 2023]. How to coordinate the relationship
between the two to simultaneously obtain the advantages of
parameterization and non-parameterization is a problem that
needs addressing.

Lastly, the engineering practice of RAG is a significant
area of interest. The ease of implementation and align-
ment with corporate engineering needs have contributed to
RAG’s rise. However, in engineering practice, questions
like how to improve retrieval efficiency and document re-
call rate in large-scale knowledge base scenarios, and how
to ensure enterprise data security, such as preventing LLMs
from being induced to disclose the source, metadata, or
other information of documents, are crucial issues that need
resolution[Alon et al., 2022].

Horizontal expansion of RAG

Research on RAG has rapidly expanded in the horizontal
field. Starting from the initial text question answering do-
main, RAG’s ideas have gradually been applied to more
modal data, such as images, code, structured knowledge, au-
dio and video, and so on. There are already many works in
this regard.

In the image field, the propozhiyosal of BLIP-
2[Li et al., 2023a], which uses frozen image encoders
and large-scale language models for visual language
pre-training, has lowered the cost of model training. Addi-
tionally, the model can generate image-to-text conversions
from zero samples. In the field of text generation, the
VBR[Zhu ef al., 2022] method is used to generate images to
guide the text generation of the language model, which has
significant effects in open text generation tasks.

In the code field, RBPS[Nashid et al., 2023] is used for
small-scale learning related to code. By encoding or fre-
quency analysis, similar code examples to the developers’
tasks are automatically retrieved. This technique has proven
its effectiveness in test assertion generation and program re-
pair tasks. In the field of structured knowledge, methods like
CoK][Li ef al., 2023c] hints first retrieve facts related to the
input question from the knowledge graph and then add these
facts to the input in the form of hints. This method has per-
formed well in knowledge graph question answering tasks.

For the field of audio and Vvideo, the
GSS[Zhao et al., 2022] method retrieves and concatenates
audio clips from the spoken vocabulary bank, immediately
transforming MT data into ST data. UEOP[Chan et al., 2023]
introduces a new breakthrough in end-to-end automatic
speech recognition by introducing external offline strate-
gies for voice-to-text mapping. Audio embeddings and
semantic text embeddings generated by text-to-speech
methods can bias ASR through KNN-based attention fu-
sion, effectively shortening domain adaptation time. The
Vid2Seq[Yang et al., 2023a] architecture enhances the lan-
guage model by introducing special time markings, enabling
it to seamlessly predict event boundaries and text descriptions



within the same output sequence.

8.2 [Ecosystem of RAG

Downstream Tasks and Evaluation

By integrating relevant information from a broad knowledge
base, RAG has demonstrated significant potential in enhanc-
ing language models’ ability to process complex queries and
generate information-rich responses. Numerous studies have
shown that RAG performs well in various downstream tasks,
such as open-ended question answering and fact verification.
RAG models not only improve the accuracy and relevance of
information in downstream applications but also increase the
diversity and depth of responses.

Given the success of RAG, exploring the model’s adapt-
ability and universality in multi-domain applications will be
part of future work. This includes its use in professional do-
main knowledge question-answering, such as in medicine,
law, and education. In the application of downstream tasks
such as professional domain knowledge question-answering,
RAG might offer lower training costs and better performance
benefits than fine-tuning.

Simultaneously, improving the evaluation system of RAG
for assessing and optimizing its application in different down-
stream tasks is crucial for the model’s efficiency and bene-
fits in specific tasks. This includes developing more accurate
evaluation metrics and frameworks for different downstream
tasks, such as context relevance, content creativity, and harm-
lessness, among others.

Furthermore, enhancing the interpretability of models
through RAG, allowing users to better understand how and
why the model makes specific responses, is also a meaning-
ful task.

Technical Stack

In the ecosystem of RAG, the development of the related
technical stack has played a driving role. For instance,
LangChain and LLamalndex have become widely known
quickly with the popularity of ChatGPT. They both offer a
rich set of RAG-related APIs, gradually becoming one of
the indispensable technologies in the era of large models.
Meanwhile, new types of technical stacks are constantly be-
ing developed. Although they do not offer as many features
as LangChain and LLamalndex, they focus more on their
unique characteristics. For example, Flowise AI° emphasizes
low-code, allowing users to implement various Al applica-
tions represented by RAG without writing code, simply by
dragging and dropping. Other emerging technologies include
HayStack, Meltno, and Cohere Coral.

In addition to Al-native frameworks, traditional software
or cloud service providers have also expanded their service
range. For instance, Verba’, provided by the vector database
company Weaviate, focuses on personal assistants. Amazon
offers its users the intelligent enterprise search service tool
Kendra, based on RAG thinking. Users can search in different
content repositories through built-in connectors.

The development of the technical stack and RAG are mu-
tually reinforcing. New technologies pose higher demands

Shttps://flowiseai.com
https://github.com/weaviate/Verba

on the existing technical stack, while the optimization of the
technical stack’s functions further promotes the development
of RAG technology. Overall, the technical stack of RAG’s
toolchain has initially formed, and many enterprise-level ap-
plications have gradually emerged, but an all-in-one platform
still needs to be refined.

9 Conclusion

This paper thoroughly explores Retrieval-Augmented Gener-
ation (RAG), a technique that uses an external knowledge
base to supplement the context of Large Language Models
(LLMs) and generate responses. Notably, RAG combines pa-
rameterized knowledge from LLMs and non-parameterized
external knowledge, alleviates hallucination issues, identifies
timely information via retrieval technology, and enhances re-
sponse accuracy. Additionally, by citing sources, RAG in-
creases transparency and user trust in model outputs. RAG
can also be customized based on specific domains by index-
ing relevant text corpora. RAG’s development and charac-
teristics are summarized into three paradigms: Naive RAG,
Advanced RAG, and Modular RAG, each with its models,
methods, and shortcomings. Naive RAG primarily involves
the ’retrieval-reading’ process. Advanced RAG uses more
refined data processing, optimizes the knowledge base in-
dexing, and introduces multiple or iterative retrievals. As
exploration deepens, RAG integrates other techniques like
fine-tuning, leading to the emergence of the Modular RAG
paradigm, which enriches the RAG process with new mod-
ules and offers more flexibility.

In the subsequent chapters, we further analyze three key
parts of RAG in detail. Chapter 4 introduces the retriever of
RAG, how to process corpora to obtain better semantic repre-
sentations, how to mitigate the semantic gap between Query
and documents, and how to adjust the retriever to fit the gen-
erator. Chapter 5 explains how the generator obtains better
generation results by post-processing retrieved documents,
avoiding the “Lost in the middle” issue, as well as methods to
adjust the generator to fit the retriever. Subsequently, in Chap-
ter 6, we review the current retrieval enhancement methods
from the aspects of the retrieval stage, retrieval data sources,
and retrieval process.

Chapter 7 explains how to evaluate current RAG methods,
including evaluation, key indicators, and current evaluation
frameworks Finally, we provided an outlook on the poten-
tial future research directions for RAG. As a method that
combines retrieval and generation, RAG has numerous po-
tential development directions in future research. By contin-
uously improving the technology and expanding its applica-
tions, the performance and practicality of RAG can be further
enhanced.
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