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Abstract

Generating a realistic, large-scale 3D virtual city remains a complex challenge due
to the involvement of numerous 3D assets, various city styles, and strict layout
constraints. Existing approaches provide promising attempts at procedural content
generation to create large-scale scenes using Blender agents. However, they face
crucial issues such as difficulties in scaling up generation capability and achieving
fine-grained control at the semantic layout level. To address these problems, we
propose a novel multi-modal controllable procedural content generation method,
named CityX which enhances realistic, unbounded 3D city generation guided by
multiple layout conditions, including OSM, semantic maps, and satellite images.
Specifically, the proposed method contains a general protocol for integrating vari-
ous PCG plugins and a multi-agent framework for transforming instructions into
executable Blender actions. Through this effective framework, CityXhows the
potential to build an innovative ecosystem for 3D scene generation by bridging the
gap between the quality of generated assets and industrial requirements. Exten-
sive experiments have demonstrated the effectiveness of our method in creating
high-quality, diverse, and unbounded cities guided by multi-modal conditions. Our
project page: https://cityx-lab.github.io/.

1 Introduction

Recently, 3D generative models have witnessed remarkable achievements in object generation, scene
creation, and human avatars, which are crucial technologies for game development, virtual reality,
animation, and film production. For example, DreamFusion [1] and Magic3D [2] produce 3D objects
guided based on text instructions, while Zero123 [3], Wonder3D [4] and SV3D [5] transform 2D
images into high-quality 3D assets. Different from these object-centric 3D generation works, we
focus on a challenging unbounded city-scale scene generation, which involves numerous 3D assets
(buildings, roads, vegetation, rivers, etc.), various city styles (modern style, traditional style), and
strict layout constraint. Although existing pioneers [6, 7, 8, 9] have attempted to generate larger
city-scale scenes, a significant gap remains between the quality of the generated content and the
standards required for industrial applications.
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Figure 1: The proposed CityX , under the guidance of multimodal inputs including OSM data,
semantic maps, and satellite images, facilitates the automatic creation of realistic large-scale 3D
urban scenes.

Typically, previous approaches attempt to generate realistic large-scale 3D virtual cities from three
aspects: generative methods [6, 7, 8], NeRF-based city synthetic [10, 11, 12], and procedural content
generation methods [9]. Specifically, CityGen [7], InfiniCity [6], and CityDreamer [8] focus on
lifting 2D knowledge to 3D city at layout-level, building-level and block-level. MegaNeRF [11] and
BlockNerf [12] achieve realistic city-scale scene synthesis by expanding NeRF [13] and its variants
to render city scenes. However, due to the complexity of city generation and the scarcity of training
data, the challenges of city-scale 3D scene creation have not been thoroughly investigated.

Notably, existing works [14, 15, 9] have explored the use of Blender agents driving procedural content
generation (PCG) to create large-scale scenes. These methods usually leverage the knowledge of
pre-trained large language models (LLMs) to produce executable codes. Benefiting from the powerful
task-planning capabilities of LLMs and the rule-based generation process of PCG, these approaches
provide a promising way to bridge the gap between generated assets and industrial requirements.
However, due to the irregular, non-uniform, and extensive nature of most accessible Blender plugins,
previous methods [9, 14] face challenges in scaling up and ensuring the generalization. For instance,
CityGen3D 4 and SceneCity 5 are two commonly used city generation plugins in Blender, which
have their own specific blueprints rules and node parameters. Previous works usually require
the design of customized agents for both CityGen and SceneCity, which significantly limits their
adaptability to different plugins. Moreover, as these methods only support text instruction inputs,
achieving fine-grained controlled generation, especially for layout-constrained generation, remains
challenging. Therefore, we argue existing Blender agents still face two crucial challenges, beyond
merely producing executable codes. 1. How to achieve seamless adaptation to various existing
plugins at no additional cost, which is essential for the entire community and for scaling up generation
capabilities. 2. How to enable precise control in urban scene generation, such as detailed adjustments
based on semantic maps or OpenStreetMap (OSM) data.

In this paper, we introduce a multi-modal controlled method, named CityX , to achieve high-quality
3D city generation using Blender-executable Python scripts, as shown in Fig. 1. To tackle integration
challenges among various plugins, we first provide a general protocol to reformat the interface of
different assets. Similar to excellent previous work HuggingGPT [16], the proposed protocol shows
the potential to build an ecosystem for the community, which is crucial for adapting all kinds of
PCG plugins following our rule. Specifically, the protocol primarily comprises three parts: (i) a
dynamic API conversion interface, enabling effective and flexible integration of different action
functions; (ii) structured encapsulation, accelerating the encapsulation process for beginners and
reducing the barriers to using PCG; (iii) infinite asset library and asset retrieval, facilitating unlimited

4https://citigen.gumroad.com/l/CITIGEN
5https://www.cgchan.com/store/scenecity?tdsourcetag=s_pctim_aiomsg
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expansion of assets to meet the diverse needs of scene generation. On the other hand, we propose a
multi-agent framework effectively to manage the complex, multi-round interactions between large
language models (LLMs) and Blender with visual feedback. Through these components, CityX can
produce high-quality 3D urban scenes based on various input guidance, including semantic maps,
XML-format OSM data, satellite images and textual descriptions.

The contributions of this paper are summarized as follows:

1. We propose a general protocol for LLM agents to integrate various PCG plugins, which
shows the potential for building an innovative ecosystem of 3D scene generation.

2. We introduce a controllable 3D city generation framework named CityX , which can produce
action codes for Blender by the proposed multi-agent framework with visual feedback.

3. The proposed CityX can generate high-quality and diversity unbounded 3D cities under the
guidance of multi-modal inputs, including OSM, semantic maps, and satellite images.

2 Related Works

Generating a 3D urban scene is a complex task involving multiple modules, such as accurately
generating a reasonable layout and then constructing appropriate instances on the layout. Additionally,
applying Multi-Agent systems to complex tasks like 3D urban scene generation presents significant
challenges. In this section, we will discuss works related to these aspects.

Agent Systems Based on LLMs. When researching agent systems based on Large Language Models
(LLMs), the focus lies on effectively integrating and applying these models to execute complex
tasks. Existing relevant work encompasses various aspects, including task management, role-playing,
dialogue patterns, and tool integration. For example, [17] utilizes the expansive domain knowledge
of LLMs on the internet and their emerging zero-shot planning capabilities to execute intricate
task planning and reasoning. [18] investigates the application of LLMs in scenarios involving
multi-agent coordination, covering a range of diverse task objectives. [19] presents a modular
framework that employs structured dialogue through prompts among multiple large pretrained models.
Moreover, specialized LLMs for particular applications have been explored, such as HuggingGPT
[16] for vision perception tasks, VisualChatGPT [20] for multi-modality understanding, Voyager
[21] and [22], SheetCopilot [23] for office software, and Codex [24] for Python code generation.
Furthermore,AutoGPT[25] demonstrates the ability to autonomously complete tasks by enhancing
AI models, but it is a single-agent system and does not support multi-agent collaboration. In contrast,
BabyAGI[26] uses multiple agents to manage and complete tasks, with each agent responsible for
different task modules such as creating new tasks, prioritizing the task list, and completing tasks.
Multi-agent debate research includes works[27][28] indicating that debates among multiple LLM
instances can improve reasoning and factuality, but these methods typically lack the flexibility of tool
and human involvement. AutoGen[29], as a general infrastructure, supports dynamic dialogue modes
and a broader range of applications, demonstrating potential in advancing this field.

3D Urban Scene Generation. Scene-level content generation presents a challenging task, unlike
the impressive 2D generative models primarily targeting single categories or common objects, due
to the high diversity of scenes. Semantic image synthesis, as exemplified by [30, 31, 32, 33], has
shown promising results in generating scene-level content in the wild by conditioning on pixel-wise
dense correspondence, such as semantic segmentation maps or depth maps. Recent works such as
[34, 35, 6] have realized infinite-scale 3D consistent scenes through unbounded layout extrapolation.
Additionally, in-depth research has been conducted on using procedural content generation (PCG)
techniques to generate natural scenes [36, 37] and urban scenes [38, 39, 40, 41]. For example, PMC
[42] proposed a procedural method based on 2D ocean or city boundaries to generate cities. It
employs mathematical algorithms to generate blocks and streets and utilizes subsequent techniques
to generate the geometric shapes of buildings. While traditional computer graphics methods can
generate high-quality 3D data, all parameters must be predefined during the procedural generation
process. Since the generated 3D data is subject to rule limitations and exhibits a certain degree of
deviation from the real world, this significantly constrains its flexibility and practical utility.
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Table 1: The proportion of API Input/Output Formats and Conversion Interface Statistics. A statistical
overview of API input/output formats (in percentages) is presented on the left, where PIDF represents
the proportion of input data format types and PODF represents the proportion of output data format
types, while the conversion interface along with its descriptions is detailed on the right.

Data Format PIDF(%) PODF(%) Conversion Interface Description
Scene Layout 0 19.05 Point_to_face_conversion Converting points to faces.

Noise Function 0.45 0 Cube_generation Generating cubes.
Image 0.90 0 Point_generation Generating points.

Texture Material 0.90 32.54 Line_generation Generating lines.
Geographic Information Data 1.35 0 Face_generation Generating faces.

Point 3.15 0 Line_to_face_conversion Converting lines to faces.
Boolean Value 4.50 0 Asset_placement Placing assets within a scene or environment.

Complex Geometry 4.50 43.65 Point_to_line_conversion Converting points to lines.
Color 5.86 0 OSM_file_retrieval Retrieving OpenStreetMap (OSM) files.

Basic Geometry 7.66 0 Object_meshing Meshing objects.
String Information 8.11 0 Texture_information_extraction Extracting texture information.

Surface 12.61 2.38 Asset_material_retrieval Retrieving material data for assets.
Line 13.96 2.38 Asset_mesh_retrieval Retrieving mesh data for assets.

Random Number 36.04 0 Scene_object_information_extraction Extracting scene object information.

3 Methods

Our proposed CityX can generate highly realistic large-scale urban scenes based on multi-modal
input. It consists of two key components: a PCG management protocol and a multi-agent framework.
The PCG management protocol provides a universal standard to regulate various PCG plugins,
enabling CityX to easily scale up by integrating all kinds of irregular and non-uniform plugins. At
the same time, the proposed multi-agent framework effectively manages the complex, multi-round
interactions between large language models (LLMs) and Blender. Through these components, CityX
can produce high-quality 3D urban scenes based on multimodal input guidance, including OSM data,
semantic maps, satellite images, and textual descriptions.

3.1 PCG Management Protocol

To facilitate flexible, efficient, and straightforward usage of PCG, we propose a universal protocol
for managing PCG plugins, serving as a bridge connecting the LLM and Blender. The protocol
primarily comprises three parts: (i) a dynamic API conversion interface, enabling effective and flexible
integration of different action functions; (ii) structured encapsulation, accelerating the encapsulation
process for beginners and reduces the barriers to using PCG; (iii) infinite asset library and asset
retrieval, facilitating unlimited expansion of assets to meet the diverse needs of scene generation.

Dynamic API Conversion Interface. The lack of a unified communication protocol among PCG
APIs not only hinders the free combination of different PCGs, thus reducing the diversity of generated
content, but also requires manual adjustment of the PCG workflow, which is not user-friendly for
3D modeling beginners. To address this issue, we provide a Dynamic API Conversion Interface.
Specifically, we first compile all the input and output formats of the APIs, as depicted in Table 1
on the left. Then, after summarizing all the formats, we define a comprehensive and self-consistent
dynamic API conversion interface as depicted in Table 1 on the right. This Dynamic API Conversion
Interface serves as a bridge connecting different APIs, providing communication interfaces for many
different formats of APIs. By dynamically adjusting these interfaces, the goal of freely combining
different PCGs can be achieved.

Structured Encapsulation. Since LLM cannot directly utilize PCG through Blender, PCG needs
to be encapsulated into action functions for LLM execution. However, encapsulating PCG into
action functions poses significant technical barriers for beginners, particularly in terms of both coding
knowledge and 3D modeling expertise. To enable beginners to quickly and easily create their own
action function, we propose a method of structured encapsulation. For each PCG, the encapsulation,
denoted as Encapsulation S, follows a similar structure defined as Si(Ci, Di, Ii, Li, Ri), where i
distinguishes the i-th action function. The components of the protocol are defined as follows:

• Classname The name of the action function, used for indexing the action function.
• Description A detailed objective description of an action function.
• Input A detailed objective description of the input to the action function.
• Limitation An objective description of the functional constraints of the action function.
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action function A
class scatter:

def __init__(self):
self.classname = "scatter"
self.description = "Place 

the object."
self.input = "the name of 

the object being placed and The 
name of the object to support."

self.limititon = …
@staticmethod
def run(…) …

action function B

action function C

3D asset A 3D asset B

…

PCG

Management 

Protocol

multimodal input

Osm file 

or …
Semantic map

#Stage2 Plan validating.

Common Message Pool

pcg info
["scatter": {

"class": "Scene Layout",
"description": "Place the object.",
"input": "the name of the object 

being placed and The name of the object 
to support.",

"limition": "only place objects on flat 
terrain."
},
…]

Arguments：{“input_file_path”: …,“style”: 

“ Modern”,…}

Subtask 1. 

Retrieve the osm file for the city. 

You are wrong!You

should load osm file…

Subtask1. 

Load the osm file …

correct

(planner)

pcg management

Action function:
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excute

Blender result 
and code result

This step does not have Blender 

visualization results, but the code results 
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Something error, It looks like the code 

encountered an error during execution.

(planner)

Arguments:{
"pcg_name": "assetretrievel“

"pcg_info": "OpenStreetMap data for city 

structure “}

#Stage3 Action excucate.

(executor)

Subtask 2

Load the 

osm file to 

layout. 

Arguments:{

"pcg_name": "assetretrievel“

"pcg_info": "OpenStreetMap data 

for city structure “}

Arguments:{

"pcg_name": "assetretrievel“

"pcg_info": "OpenStreetMap data 

for city structure “}

Great, the OSM 

file path has 

been retrieved 

successfully. 

Now, let's move 

on to the next 

step:Load the 

osm file to layout 

using the 

“load_osm_file_t

o_layout”function.

or

…

Final result

Subtask 3

Add 

surroundings 

such as 

vegetation 

and forest to 

the scene. 

Subtask X

Figure 2: Multi-agent Workflow: Detailed demonstration of collaboration and communication across
various stages.

• Run Function name used to execute the action function and return the result.

We provide users with a straightforward encapsulation document. By acquainting themselves with
the process of extracting API information from Blender, users can seamlessly follow the document’s
instructions to encapsulate their own functional actions.

Infinite Asset Libraries and Asset Retrieval. While many manually crafted assets are exquisite, in
urban scene generation tasks, the compatibility between assets and layout is often more crucial than
the intricacy of individual assets. To effectively obtain assets that best match the scene layout, we
propose a method of infinite asset libraries. This involves continuously expanding the asset library
through agent-driven PCG and providing textual descriptions and image renderings for each asset. To
expedite and enhance the precision of asset retrieval, we leverage the pre-trained CLIP model for
text-to-image retrieval of our assets, as illustrated in Figure X. Each rendered image of the asset is
encoded into a normalized 768-dimensional vector, which is then compared with the embedding of
the input description. The matching result is determined by calculating the cosine similarity. From
the 10 most similar results, one is randomly selected and imported into the Blender scene.

3.2 Multi-Agent Framework

Due to the hierarchical nature of controllable elements in Blender, such as the blueprint for layout
planning, the geometry node for asset scatter, and numerous parameters for asset placement, color,
size, and height, this renders a naive LLM framework inadequate for handling Blender’s complex
and diverse action. To effectively utilize actions of different hierarchies for generating high-quality
large-scale city scenes, we propose a multi-agent framework with visual feedback as depicted in
Fig. 2. This framework mainly consists of four agents: annotator, planner, executor, and evaluator.
The annotator labels all actions with multiple tags and stores the annotated action information in the
common message pool. The planner formulates the overall task pipeline using user-provided textual
information and determines the action required for different sub-tasks. The executor manages all
action functions and uses the annotated action functions to process sub-tasks of procedural generation
or asset manipulation in Blender. The evaluator assesses the correctness of the current sub-task by
obtaining scene information from Blender, such as object location and rendered images.

Multimodal Input through Multi-Agent Framework. Unlike simple LLM frameworks, our Multi-
Agent Framework can find feasible solutions through multiple rounds of interaction and visual
feedback, meaning that with only a few plugins, the target task can be accomplished, avoiding the
burden to reinvent the wheel. This also simplifies city generation through multimodal inputs. For
example, when we import a semantic map into Blender, it is stored as a point cloud containing

5



semantic information, but we only have face-based building generation actions. At this point, the
Multi-Agent Framework will find a tool to convert vertices into faces, complete the conversion, and
then use face-based building generation actions to accomplish the task.

Annotator Agent. For large-scale city generation tasks, a substantial number of action functions are
required. Therefore, effectively managing these action functions is crucial. To ensure each agent can
efficiently access all action of different hierarchies, we use the Annotator to label them.

The Annotator labels action functions in two steps: first, summarizing existing functions into
consistent concepts guided by prompts; second, labeling each function based on these concepts. An
action function may receive multiple labels. Once all action functions are processed, the labeled
information is stored in the common message pool, enabling other agents to directly access it.

Planner Agent. We consider PCG-based city scene generation as an open-loop planning task with
flexible steps. Specifically: (i) Termination of the city scene generation task depends on meeting
the user’s requirements; (ii) City scene generation tasks are a series of sequentially arranged action
functions, where the order of these actions significantly impacts the final outcome. To address these
challenges, we propose a dynamic planner. At the beginning of the task, the planner formulates a
rough workflow as a reference. During the execution of specific sub-tasks, the planner plans the next
action based on the current sub-task goals and the workflow, until the user’s requirements are met.

When the planner directly receives user input, it needs to translate the user’s intent into a series
of referable executable actions with additional explanations, which will be stored in the common
message pool. To achieve this, we prompt the planner to produce a preliminary action plan, serving
as the workflow. Specifically, we utilize the labeled information L from the common message pool,
the user input I , and the planner’s guidance document D as inputs, allowing the planner to generate
an ordered workflow W . This process is formalized as follows:

W ← Planner(L, I,D) (1)
During the execution of the t-th sub-task, the planner needs to formulate actions required for the
(t + 1)-th sub-task. To ensure the accuracy and coherence of actions, the planner refers to the
workflow. Specifically, based on the ordered workflow W , sub-task input I , the labeled information
L from the common message pool, and the planner’s guidance document D, the planner infers the
next action At+1, where At+1 stands for the action of the (t+ 1)-th sub-task.

At+1 ← Planner(L, I,D,W ). (2)

Executor Agent. To achieve Interactive Workflow in Blender, we deploy the Executor within the
Blender environment. All agents send action execution commands to the Executor through a local
backend server. As mentioned in Section 3.1, we transform PCG plug-ins into executable action
functions using structured encapsulation. This allows the Executor to initialize all actions flexibly.
To enable agents to precisely control actions, each action function is structurally recorded in JSON
format. For example, the scale_object action function is documented as follows:

scale_object_doc = {name: scale_object,description: Scale an object,
parameters:{scale_factor:{type:tuple, description:scale factor},

scaled_obj_name:{type:str, description:scaled object name}}}

During the execution of the t-th sub-task, the Executor uses the action document D and the sub-task
input I to generate the action arguments Arguments. The action At is then executed in Blender
based on the arguments. Here, At+1 represents the action for the (t+ 1)-th sub-task, St+1 represents
the Blender state for the (t+ 1)-th sub-task, and St represents the Blender state for the t-th sub-task.

Arguments← Executor(I,D), St+1 ← Blender(St, At, Arguments) (3)

Evaluator Agent. To address the limitations of textual feedback in urban scene generation tasks,
we designed an Evaluator with visual feedback based on GPT-4V[43]. Specifically, we first render
the generated scene as an image. Then, we provide both the image and the current sub-task text
input to the Evaluator, guiding it with prompts to assess whether the scene’s geometry and materials
match the sub-task expectations. If the Evaluator determines that the rendered image is consistent
with the sub-task text input in terms of geometry and materials, the evaluation ends. However, if the
Evaluator identifies errors, it can pass this information to the Planner for improvements. This process
is formalized as follows:

R← Evaluator(GPT-4V(img, I,D)), (4)
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Figure 3: Comparative results on city generation. Issues with unreasonable geometry are observed in
previous works, while our method performs well in generating realistic large-scale city scenes.

Table 2: Comparing the performance of different language models in city generation. The aesthetic
score represents the intuitive aesthetic rating, and the rationality score is the logical coherence rating.

Model AS AES
aesthetic score rationality score aesthetic score rationality score

CityDream[8] 2.80 3.05 2.65 3.40
PersistentNature[34] 1.30 1.40 1.55 1.35
SceneDreamer[35] 1.30 1.63 1.30 1.35
SceneX [9] 3.73 3.63 3.50 3.45
CityX (Ours) 4.30 4.35 4.15 4.30

where R stands for the Evaluator result, img stands for the rendered image, I stands for the sub-task
input, and D stands for the Evaluator’s guidance document.

4 Experiments

The goals of our experiments are threefold: (i) to verify the capability of CityX for generating highly
realistic large-scale city with different modes of input; (ii) to prove that the Muti-Agent framework and
pcg protocol we designed are effective; (iii) to compare different LLMs on the proposed benchmark.

4.1 Benchmark Protocol

Dataset. To evaluate the effectiveness of the proposed CityX , we collect 50 city Semantic Maps, 50
city Height Fields, and 50 city OSM files in XML format. We also collect 50 sets of descriptions
about city styles and weather. Then, we feed them to our CityX to generate corresponding city
models, which are used to perform quantitative and qualitative comparisons.

Models. When generating and editing the 3D scenes, we adopt the leading GPT-4 as the large
language model with its public API keys. To ensure stable output from the LLM, we set both the
decoding temperature and the seed to 0.

Metrics: We use Executability Rate (ER@1) and Success Rate (SR@1) to evaluate the capabilities
of LLMs on our CityX . The former measures the proportion of proposed actions that can be
executed, and the latter is used to evaluate action correctness [44]. Additionally, we use a unified
evaluation standard as a reference. We categorize the aesthetics of city scenes into five levels: Poor (1
points)/Below Average (2 points)/Average (3 points)/Good (4 points)/Excellent (5 points).
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Multimodal input

Please generate a modern city based on the OSM file/Semantic map/Satellite aerial photograph I provided.

Overhead View         Street-Level View1        Street-Level View2      Street-Level View3  

Figure 4: Urban scene generation with multimodal inputs, where we present an overhead view aligned
with the multimodal input perspective, along with three street-level views.

4.2 Main Result

Urban Scene Generation with Multimodal Inputs. We first show the ability of CityX to generate
large-scale urban scenes, as depicted in Figure 4. The results show that CityX is capable of generating
highly realistic urban scenes using multimodal data inputs, including OSM data, semantic maps, and
satellite images, demonstrating its effectiveness and flexibility in urban scene generation.

We also compare our method with other city generation approaches, as shown in Figure 3. The
results indicate that PersistantNature[34] and InfiniCity[6] have severe deformation issues throughout
the entire scene. While SceneDreamer[35] and CityDreamer[8] demonstrate improved structural
consistency, their building quality remains relatively low. While SceneX [9] achieves high quality, it
encounters issues with overlapping assets and a high duplication rate of buildings. In contrast, the
city generated by CityX demonstrates a regular geometric structure and high quality, which is devoid
of overlapping buildings and exhibits minimal repetition.

Aesthetic Evaluation. To better assess the quality of cities generated by CityX , we collect results
from various related works on urban generation and invite 30 volunteers and 5 experts in 3D modeling
to evaluate these works aesthetically. To ensure fairness, we anonymize all results. As shown in Table
2, the cities generated by CityX attain a "Good" level in aesthetic scoring, a distinction not achieved
by other works, demonstrating its highly realistic capabilities in city generation.

Specific Refinement Editing. CityX supports specific refinement editing for scene customization,
involving asset manipulation, weather adjustment, and style modification. We conduct relevant
experiments, as depicted in Figure 5. Based on the results, it’s clear that CityX performs well in
accurately controlling urban scenes to meet input requirements consistently.

Table 3: Ablation Study Results for Different
Components of the Protocol.

Description. Input Limitation ER@1 SR@1
✓ 36.00 41.67

✓ ✓ 37.00 51.35
✓ 44.00 56.82
✓ ✓ 69.00 60.87
✓ ✓ 73.00 61.64
✓ ✓ ✓ 94.00 82.98

Table 4: Comparing the performance of different
language models in city generation.

Model ER@1 SR@1
Llama2-7B[45] 27.00 59.26
Mistral[46] 78.00 61.54
Gemma-2B[47] 9.00 33.33
Gemma-7B[47] 39.00 69.23
GPT-3.5-turbo[48] 72.00 75.00
GPT-4[49] 91.00 81.32
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Generate a Modern city. Turn the style to European style.

Generate a city at noon. Change the city scene to dusk. Change the city scene to midnight.

Generate a little city. Change the lake to grassland. Change the grassland into a forest.

Turn the style to little town style.

Figure 5: Performance of CityX in scene customization and refinement editing

4.3 Ablation Study of PCG Protocol.

Analysis of Different Components. To assess the impact of each component of the structured
encapsulation on the overall system, we conduct ablation experiments on individual parts of the
structured encapsulation, as shown in Table 3. The table demonstrates that when encapsulating PCG,
adding Description, Input, and Limitation all boost ER@1 and SR@1. Notably, including Description
leads to the highest increase, with SR@1 rising by 57.00% and ER@1 by 31.63%, significantly
enhancing the system’s Executability Rate and Success Rate. After adding Input, SR@1 and ER@1
increase by up to 21.34% and 25.00%, respectively. Similarly, with the inclusion of Limitation,
SR@1 and ER@1 see maximum increases of 22.11% and 25.00%. This suggests that incorporating
Input and Limitation can improve the system’s Executability Rate and Success Rate.

Comparing Agent Frameworks with Different LLMs To evaluate the effects of different large
language model variants on multi-agent frameworks, we assessed the system’s ER@1 and SR@1
using various LLM versions. As not all open-source models have visual perception capabilities, we
used GPT-4-Vision-Preview uniformly for visual feedback. To maintain experimental stability, the
temperature and seed for all LLMs were set to 0. The experiment utilized 50 description sets from
Section 4.1 dataset. Results are shown in Table 4. GPT-4 achieves the highest scores in both ER@1
and SR@1, with scores of 91.00% and 89.01%, respectively. Mistral ranks second in ER@1, with a
score of 78.00%, while GPT-3.5-turbo and Gemma-7B rank second and third in SR@1, with scores
of 75.00% and 69.23%, respectively. It is evident that Mistral and Gemma-7B, two open-source large
language models, perform comparably to GPT-3.5-turbo but still fall short of GPT-4’s performance.

5 Conclusions

In this paper, we propose a novel multi-modal controllable procedural content generation method
CityX to generate realistic, unbounded 3D cities. The proposed method supports multi-modal guided
conditions, such as OSM, semantic maps, and satellite images. The proposed method includes a
general protocol for integrating various PCG plugins and a multi-agent framework for transforming
instructions into executable Blender actions. Through this effective framework, CityX shows potential
for building an innovative ecosystem in 3D scene generation by bridging the gap between generated
assets and industrial requirements. Extensive experiments have demonstrated the effectiveness of our
method in creating high-quality, diverse, and unbounded cities guided by multi-modal conditions.

Societal Impacts. CityX generates high-quality urban through the use of the PCG Management
Protocol and Multi-Agent Framework, closing the gap between industrial application needs and the
quality of generative models. This approach is significant for building a new ecosystem based on
procedural content generation and benefits the entire PCG community.
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Limitations. CityX has two drawbacks for future improvement. Firstly, we lack an efficient method
to accelerate parameter extraction in PCG, which requires significant manpower and resources.
Secondly, scene generation based on PCG methods is constrained by the inherent rules of PCG itself,
limiting the diversity of PCG generation techniques.
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