
CityX : Controllable Procedural Content Generation for
Unbounded 3D Cities

Shougao Zhang2∗ Mengqi Zhou1* Yuxi Wang1,3 Chuanchen Luo1,3

Rongyu Wang1 Yiwei Li1 Xucheng Yin4 Zhaoxiang Zhang1,3†

Junran Peng3,4‡

1University of Chinese Academy of Sciences, 2China University of Geosciences (Beijing)
3Center for Research on Intelligent Perception and Computing, CASIA, 4University of Science and Technology

Beijing
zhangshougao@email.cugb.edu.cn, jrpeng4ever@126.com, mengqi.zhou@sensetime.com

yuxi.wang@ia.ac.cn, zhaoxiang.zhang@ia.ac.cn

Abstract

Generating a realistic, large-scale 3D virtual city remains a complex challenge due
to the involvement of numerous 3D assets, various city styles, and strict layout
constraints. Existing approaches provide promising attempts at procedural content
generation to create large-scale scenes using Blender agents. However, they face
crucial issues such as difficulties in scaling up generation capability and achieving
fine-grained control at the semantic layout level. To address these problems, we
propose a novel multi-modal controllable procedural content generation method,
named CityX which enhances realistic, unbounded 3D city generation guided by
multiple layout conditions, including OSM, semantic maps, and satellite images.
Specifically, the proposed method contains a general protocol for integrating vari-
ous PCG plugins and a multi-agent framework for transforming instructions into
executable Blender actions. Through this effective framework, CityXhows the
potential to build an innovative ecosystem for 3D scene generation by bridging the
gap between the quality of generated assets and industrial requirements. Exten-
sive experiments have demonstrated the effectiveness of our method in creating
high-quality, diverse, and unbounded cities guided by multi-modal conditions. Our
project page: https://cityx-lab.github.io/.

1 Introduction

Recently, 3D generative models have witnessed remarkable achievements in object generation, scene
creation, and human avatars, which are crucial technologies for game development, virtual reality,
animation, and film production. For example, DreamFusion [1] and Magic3D [2] produce 3D objects
guided based on text instructions, while Zero123 [3], Wonder3D [4] and SV3D [5] transform 2D
images into high-quality 3D assets. Different from these object-centric 3D generation works, we
focus on a challenging unbounded city-scale scene generation, which involves numerous 3D assets
(buildings, roads, vegetation, rivers, etc.), various city styles (modern style, traditional style), and
strict layout constraint. Although existing pioneers [6, 7, 8, 9] have attempted to generate larger
city-scale scenes, a significant gap remains between the quality of the generated content and the
standards required for industrial applications.

∗Equal contributions.
†Corresponding author.
‡Corresponding author.

ar
X

iv
:2

40
7.

17
57

2v
1

 [
cs

.C
V

]
 2

4
Ju

l 2
02

4

https://cityx-lab.github.io/

(human)

OSM file Semantic map Satellite aerial photograph

: Please Generate a Modern city to me.

Multimodal Input

or or …

Multi-Agent

Result

Action Function

PCG Management Protocol

Visiual Feedback

action function A action function B

action function C action function D

…

Plug-ins

Figure 1: The proposed CityX , under the guidance of multimodal inputs including OSM data,
semantic maps, and satellite images, facilitates the automatic creation of realistic large-scale 3D
urban scenes.

Typically, previous approaches attempt to generate realistic large-scale 3D virtual cities from three
aspects: generative methods [6, 7, 8], NeRF-based city synthetic [10, 11, 12], and procedural content
generation methods [9]. Specifically, CityGen [7], InfiniCity [6], and CityDreamer [8] focus on
lifting 2D knowledge to 3D city at layout-level, building-level and block-level. MegaNeRF [11] and
BlockNerf [12] achieve realistic city-scale scene synthesis by expanding NeRF [13] and its variants
to render city scenes. However, due to the complexity of city generation and the scarcity of training
data, the challenges of city-scale 3D scene creation have not been thoroughly investigated.

Notably, existing works [14, 15, 9] have explored the use of Blender agents driving procedural content
generation (PCG) to create large-scale scenes. These methods usually leverage the knowledge of
pre-trained large language models (LLMs) to produce executable codes. Benefiting from the powerful
task-planning capabilities of LLMs and the rule-based generation process of PCG, these approaches
provide a promising way to bridge the gap between generated assets and industrial requirements.
However, due to the irregular, non-uniform, and extensive nature of most accessible Blender plugins,
previous methods [9, 14] face challenges in scaling up and ensuring the generalization. For instance,
CityGen3D 4 and SceneCity 5 are two commonly used city generation plugins in Blender, which
have their own specific blueprints rules and node parameters. Previous works usually require
the design of customized agents for both CityGen and SceneCity, which significantly limits their
adaptability to different plugins. Moreover, as these methods only support text instruction inputs,
achieving fine-grained controlled generation, especially for layout-constrained generation, remains
challenging. Therefore, we argue existing Blender agents still face two crucial challenges, beyond
merely producing executable codes. 1. How to achieve seamless adaptation to various existing
plugins at no additional cost, which is essential for the entire community and for scaling up generation
capabilities. 2. How to enable precise control in urban scene generation, such as detailed adjustments
based on semantic maps or OpenStreetMap (OSM) data.

In this paper, we introduce a multi-modal controlled method, named CityX , to achieve high-quality
3D city generation using Blender-executable Python scripts, as shown in Fig. 1. To tackle integration
challenges among various plugins, we first provide a general protocol to reformat the interface of
different assets. Similar to excellent previous work HuggingGPT [16], the proposed protocol shows
the potential to build an ecosystem for the community, which is crucial for adapting all kinds of
PCG plugins following our rule. Specifically, the protocol primarily comprises three parts: (i) a
dynamic API conversion interface, enabling effective and flexible integration of different action
functions; (ii) structured encapsulation, accelerating the encapsulation process for beginners and
reducing the barriers to using PCG; (iii) infinite asset library and asset retrieval, facilitating unlimited

4https://citigen.gumroad.com/l/CITIGEN
5https://www.cgchan.com/store/scenecity?tdsourcetag=s_pctim_aiomsg

2

expansion of assets to meet the diverse needs of scene generation. On the other hand, we propose a
multi-agent framework effectively to manage the complex, multi-round interactions between large
language models (LLMs) and Blender with visual feedback. Through these components, CityX can
produce high-quality 3D urban scenes based on various input guidance, including semantic maps,
XML-format OSM data, satellite images and textual descriptions.

The contributions of this paper are summarized as follows:

1. We propose a general protocol for LLM agents to integrate various PCG plugins, which
shows the potential for building an innovative ecosystem of 3D scene generation.

2. We introduce a controllable 3D city generation framework named CityX , which can produce
action codes for Blender by the proposed multi-agent framework with visual feedback.

3. The proposed CityX can generate high-quality and diversity unbounded 3D cities under the
guidance of multi-modal inputs, including OSM, semantic maps, and satellite images.

2 Related Works

Generating a 3D urban scene is a complex task involving multiple modules, such as accurately
generating a reasonable layout and then constructing appropriate instances on the layout. Additionally,
applying Multi-Agent systems to complex tasks like 3D urban scene generation presents significant
challenges. In this section, we will discuss works related to these aspects.

Agent Systems Based on LLMs. When researching agent systems based on Large Language Models
(LLMs), the focus lies on effectively integrating and applying these models to execute complex
tasks. Existing relevant work encompasses various aspects, including task management, role-playing,
dialogue patterns, and tool integration. For example, [17] utilizes the expansive domain knowledge
of LLMs on the internet and their emerging zero-shot planning capabilities to execute intricate
task planning and reasoning. [18] investigates the application of LLMs in scenarios involving
multi-agent coordination, covering a range of diverse task objectives. [19] presents a modular
framework that employs structured dialogue through prompts among multiple large pretrained models.
Moreover, specialized LLMs for particular applications have been explored, such as HuggingGPT
[16] for vision perception tasks, VisualChatGPT [20] for multi-modality understanding, Voyager
[21] and [22], SheetCopilot [23] for office software, and Codex [24] for Python code generation.
Furthermore,AutoGPT[25] demonstrates the ability to autonomously complete tasks by enhancing
AI models, but it is a single-agent system and does not support multi-agent collaboration. In contrast,
BabyAGI[26] uses multiple agents to manage and complete tasks, with each agent responsible for
different task modules such as creating new tasks, prioritizing the task list, and completing tasks.
Multi-agent debate research includes works[27][28] indicating that debates among multiple LLM
instances can improve reasoning and factuality, but these methods typically lack the flexibility of tool
and human involvement. AutoGen[29], as a general infrastructure, supports dynamic dialogue modes
and a broader range of applications, demonstrating potential in advancing this field.

3D Urban Scene Generation. Scene-level content generation presents a challenging task, unlike
the impressive 2D generative models primarily targeting single categories or common objects, due
to the high diversity of scenes. Semantic image synthesis, as exemplified by [30, 31, 32, 33], has
shown promising results in generating scene-level content in the wild by conditioning on pixel-wise
dense correspondence, such as semantic segmentation maps or depth maps. Recent works such as
[34, 35, 6] have realized infinite-scale 3D consistent scenes through unbounded layout extrapolation.
Additionally, in-depth research has been conducted on using procedural content generation (PCG)
techniques to generate natural scenes [36, 37] and urban scenes [38, 39, 40, 41]. For example, PMC
[42] proposed a procedural method based on 2D ocean or city boundaries to generate cities. It
employs mathematical algorithms to generate blocks and streets and utilizes subsequent techniques
to generate the geometric shapes of buildings. While traditional computer graphics methods can
generate high-quality 3D data, all parameters must be predefined during the procedural generation
process. Since the generated 3D data is subject to rule limitations and exhibits a certain degree of
deviation from the real world, this significantly constrains its flexibility and practical utility.

3

Table 1: The proportion of API Input/Output Formats and Conversion Interface Statistics. A statistical
overview of API input/output formats (in percentages) is presented on the left, where PIDF represents
the proportion of input data format types and PODF represents the proportion of output data format
types, while the conversion interface along with its descriptions is detailed on the right.

Data Format PIDF(%) PODF(%) Conversion Interface Description
Scene Layout 0 19.05 Point_to_face_conversion Converting points to faces.

Noise Function 0.45 0 Cube_generation Generating cubes.
Image 0.90 0 Point_generation Generating points.

Texture Material 0.90 32.54 Line_generation Generating lines.
Geographic Information Data 1.35 0 Face_generation Generating faces.

Point 3.15 0 Line_to_face_conversion Converting lines to faces.
Boolean Value 4.50 0 Asset_placement Placing assets within a scene or environment.

Complex Geometry 4.50 43.65 Point_to_line_conversion Converting points to lines.
Color 5.86 0 OSM_file_retrieval Retrieving OpenStreetMap (OSM) files.

Basic Geometry 7.66 0 Object_meshing Meshing objects.
String Information 8.11 0 Texture_information_extraction Extracting texture information.

Surface 12.61 2.38 Asset_material_retrieval Retrieving material data for assets.
Line 13.96 2.38 Asset_mesh_retrieval Retrieving mesh data for assets.

Random Number 36.04 0 Scene_object_information_extraction Extracting scene object information.

3 Methods

Our proposed CityX can generate highly realistic large-scale urban scenes based on multi-modal
input. It consists of two key components: a PCG management protocol and a multi-agent framework.
The PCG management protocol provides a universal standard to regulate various PCG plugins,
enabling CityX to easily scale up by integrating all kinds of irregular and non-uniform plugins. At
the same time, the proposed multi-agent framework effectively manages the complex, multi-round
interactions between large language models (LLMs) and Blender. Through these components, CityX
can produce high-quality 3D urban scenes based on multimodal input guidance, including OSM data,
semantic maps, satellite images, and textual descriptions.

3.1 PCG Management Protocol

To facilitate flexible, efficient, and straightforward usage of PCG, we propose a universal protocol
for managing PCG plugins, serving as a bridge connecting the LLM and Blender. The protocol
primarily comprises three parts: (i) a dynamic API conversion interface, enabling effective and flexible
integration of different action functions; (ii) structured encapsulation, accelerating the encapsulation
process for beginners and reduces the barriers to using PCG; (iii) infinite asset library and asset
retrieval, facilitating unlimited expansion of assets to meet the diverse needs of scene generation.

Dynamic API Conversion Interface. The lack of a unified communication protocol among PCG
APIs not only hinders the free combination of different PCGs, thus reducing the diversity of generated
content, but also requires manual adjustment of the PCG workflow, which is not user-friendly for
3D modeling beginners. To address this issue, we provide a Dynamic API Conversion Interface.
Specifically, we first compile all the input and output formats of the APIs, as depicted in Table 1
on the left. Then, after summarizing all the formats, we define a comprehensive and self-consistent
dynamic API conversion interface as depicted in Table 1 on the right. This Dynamic API Conversion
Interface serves as a bridge connecting different APIs, providing communication interfaces for many
different formats of APIs. By dynamically adjusting these interfaces, the goal of freely combining
different PCGs can be achieved.

Structured Encapsulation. Since LLM cannot directly utilize PCG through Blender, PCG needs
to be encapsulated into action functions for LLM execution. However, encapsulating PCG into
action functions poses significant technical barriers for beginners, particularly in terms of both coding
knowledge and 3D modeling expertise. To enable beginners to quickly and easily create their own
action function, we propose a method of structured encapsulation. For each PCG, the encapsulation,
denoted as Encapsulation S, follows a similar structure defined as Si(Ci, Di, Ii, Li, Ri), where i
distinguishes the i-th action function. The components of the protocol are defined as follows:

• Classname The name of the action function, used for indexing the action function.
• Description A detailed objective description of an action function.
• Input A detailed objective description of the input to the action function.
• Limitation An objective description of the functional constraints of the action function.

4

(human) : Please Generate a Modern city to me.

pcg:

…

(annotator)

(planner)

(planner's assistant)

pcg management

…

#Preprocess
ing stage

#Stage1 Task planning.

+

#Stage3 Action execute.

(executor)

#Stage4 Result feedback.
(Visual-guided)

(evaluator)

LLM+Vision

Class.py
(action function)

Sure, here are the steps we would need to follow:

1. Retrieve the osm file for the city.

2. Load the osm file …

…

X. Render ...

action function A
class scatter:

def __init__(self):
self.classname = "scatter"
self.description = "Place

the object."
self.input = "the name of

the object being placed and The
name of the object to support."

self.limititon = …
@staticmethod
def run(…) …

action function B

action function C

3D asset A 3D asset B

…

PCG

Management

Protocol

multimodal input

Osm file

or …
Semantic map

#Stage2 Plan validating.

Common Message Pool

pcg info
["scatter": {

"class": "Scene Layout",
"description": "Place the object.",
"input": "the name of the object

being placed and The name of the object
to support.",

"limition": "only place objects on flat
terrain."
},
…]

Arguments：{“input_file_path”: …,“style”:

“ Modern”,…}

Subtask 1.

Retrieve the osm file for the city.

You are wrong!You

should load osm file…

Subtask1.

Load the osm file …

correct

(planner)

pcg management

Action function:
"assetretrievel "

excute

Blender result
and code result

This step does not have Blender

visualization results, but the code results

seem fine. You can proceed to the next step.

Something error, It looks like the code

encountered an error during execution.

(planner)

Arguments:{
"pcg_name": "assetretrievel“

"pcg_info": "OpenStreetMap data for city

structure “}

#Stage3 Action excucate.

(executor)

Subtask 2

Load the

osm file to

layout.

Arguments:{

"pcg_name": "assetretrievel“

"pcg_info": "OpenStreetMap data

for city structure “}

Arguments:{

"pcg_name": "assetretrievel“

"pcg_info": "OpenStreetMap data

for city structure “}

Great, the OSM

file path has

been retrieved

successfully.

Now, let's move

on to the next

step:Load the

osm file to layout

using the

“load_osm_file_t

o_layout”function.

or

…

Final result

Subtask 3

Add

surroundings

such as

vegetation

and forest to

the scene.

Subtask X

Figure 2: Multi-agent Workflow: Detailed demonstration of collaboration and communication across
various stages.

• Run Function name used to execute the action function and return the result.

We provide users with a straightforward encapsulation document. By acquainting themselves with
the process of extracting API information from Blender, users can seamlessly follow the document’s
instructions to encapsulate their own functional actions.

Infinite Asset Libraries and Asset Retrieval. While many manually crafted assets are exquisite, in
urban scene generation tasks, the compatibility between assets and layout is often more crucial than
the intricacy of individual assets. To effectively obtain assets that best match the scene layout, we
propose a method of infinite asset libraries. This involves continuously expanding the asset library
through agent-driven PCG and providing textual descriptions and image renderings for each asset. To
expedite and enhance the precision of asset retrieval, we leverage the pre-trained CLIP model for
text-to-image retrieval of our assets, as illustrated in Figure X. Each rendered image of the asset is
encoded into a normalized 768-dimensional vector, which is then compared with the embedding of
the input description. The matching result is determined by calculating the cosine similarity. From
the 10 most similar results, one is randomly selected and imported into the Blender scene.

3.2 Multi-Agent Framework

Due to the hierarchical nature of controllable elements in Blender, such as the blueprint for layout
planning, the geometry node for asset scatter, and numerous parameters for asset placement, color,
size, and height, this renders a naive LLM framework inadequate for handling Blender’s complex
and diverse action. To effectively utilize actions of different hierarchies for generating high-quality
large-scale city scenes, we propose a multi-agent framework with visual feedback as depicted in
Fig. 2. This framework mainly consists of four agents: annotator, planner, executor, and evaluator.
The annotator labels all actions with multiple tags and stores the annotated action information in the
common message pool. The planner formulates the overall task pipeline using user-provided textual
information and determines the action required for different sub-tasks. The executor manages all
action functions and uses the annotated action functions to process sub-tasks of procedural generation
or asset manipulation in Blender. The evaluator assesses the correctness of the current sub-task by
obtaining scene information from Blender, such as object location and rendered images.

Multimodal Input through Multi-Agent Framework. Unlike simple LLM frameworks, our Multi-
Agent Framework can find feasible solutions through multiple rounds of interaction and visual
feedback, meaning that with only a few plugins, the target task can be accomplished, avoiding the
burden to reinvent the wheel. This also simplifies city generation through multimodal inputs. For
example, when we import a semantic map into Blender, it is stored as a point cloud containing

5

semantic information, but we only have face-based building generation actions. At this point, the
Multi-Agent Framework will find a tool to convert vertices into faces, complete the conversion, and
then use face-based building generation actions to accomplish the task.

Annotator Agent. For large-scale city generation tasks, a substantial number of action functions are
required. Therefore, effectively managing these action functions is crucial. To ensure each agent can
efficiently access all action of different hierarchies, we use the Annotator to label them.

The Annotator labels action functions in two steps: first, summarizing existing functions into
consistent concepts guided by prompts; second, labeling each function based on these concepts. An
action function may receive multiple labels. Once all action functions are processed, the labeled
information is stored in the common message pool, enabling other agents to directly access it.

Planner Agent. We consider PCG-based city scene generation as an open-loop planning task with
flexible steps. Specifically: (i) Termination of the city scene generation task depends on meeting
the user’s requirements; (ii) City scene generation tasks are a series of sequentially arranged action
functions, where the order of these actions significantly impacts the final outcome. To address these
challenges, we propose a dynamic planner. At the beginning of the task, the planner formulates a
rough workflow as a reference. During the execution of specific sub-tasks, the planner plans the next
action based on the current sub-task goals and the workflow, until the user’s requirements are met.

When the planner directly receives user input, it needs to translate the user’s intent into a series
of referable executable actions with additional explanations, which will be stored in the common
message pool. To achieve this, we prompt the planner to produce a preliminary action plan, serving
as the workflow. Specifically, we utilize the labeled information L from the common message pool,
the user input I , and the planner’s guidance document D as inputs, allowing the planner to generate
an ordered workflow W . This process is formalized as follows:

W ← Planner(L, I,D) (1)
During the execution of the t-th sub-task, the planner needs to formulate actions required for the
(t + 1)-th sub-task. To ensure the accuracy and coherence of actions, the planner refers to the
workflow. Specifically, based on the ordered workflow W , sub-task input I , the labeled information
L from the common message pool, and the planner’s guidance document D, the planner infers the
next action At+1, where At+1 stands for the action of the (t+ 1)-th sub-task.

At+1 ← Planner(L, I,D,W). (2)

Executor Agent. To achieve Interactive Workflow in Blender, we deploy the Executor within the
Blender environment. All agents send action execution commands to the Executor through a local
backend server. As mentioned in Section 3.1, we transform PCG plug-ins into executable action
functions using structured encapsulation. This allows the Executor to initialize all actions flexibly.
To enable agents to precisely control actions, each action function is structurally recorded in JSON
format. For example, the scale_object action function is documented as follows:

scale_object_doc = {name: scale_object,description: Scale an object,
parameters:{scale_factor:{type:tuple, description:scale factor},

scaled_obj_name:{type:str, description:scaled object name}}}

During the execution of the t-th sub-task, the Executor uses the action document D and the sub-task
input I to generate the action arguments Arguments. The action At is then executed in Blender
based on the arguments. Here, At+1 represents the action for the (t+ 1)-th sub-task, St+1 represents
the Blender state for the (t+ 1)-th sub-task, and St represents the Blender state for the t-th sub-task.

Arguments← Executor(I,D), St+1 ← Blender(St, At, Arguments) (3)

Evaluator Agent. To address the limitations of textual feedback in urban scene generation tasks,
we designed an Evaluator with visual feedback based on GPT-4V[43]. Specifically, we first render
the generated scene as an image. Then, we provide both the image and the current sub-task text
input to the Evaluator, guiding it with prompts to assess whether the scene’s geometry and materials
match the sub-task expectations. If the Evaluator determines that the rendered image is consistent
with the sub-task text input in terms of geometry and materials, the evaluation ends. However, if the
Evaluator identifies errors, it can pass this information to the Planner for improvements. This process
is formalized as follows:

R← Evaluator(GPT-4V(img, I,D)), (4)

6

Pe
rs
is
te
nt
N
at
ur
e

Sc
en

eD
re
am

er
C
ity

D
re
am

er
Sc

en
e𝓧

O
ur
s

Figure 3: Comparative results on city generation. Issues with unreasonable geometry are observed in
previous works, while our method performs well in generating realistic large-scale city scenes.

Table 2: Comparing the performance of different language models in city generation. The aesthetic
score represents the intuitive aesthetic rating, and the rationality score is the logical coherence rating.

Model AS AES
aesthetic score rationality score aesthetic score rationality score

CityDream[8] 2.80 3.05 2.65 3.40
PersistentNature[34] 1.30 1.40 1.55 1.35
SceneDreamer[35] 1.30 1.63 1.30 1.35
SceneX [9] 3.73 3.63 3.50 3.45
CityX (Ours) 4.30 4.35 4.15 4.30

where R stands for the Evaluator result, img stands for the rendered image, I stands for the sub-task
input, and D stands for the Evaluator’s guidance document.

4 Experiments

The goals of our experiments are threefold: (i) to verify the capability of CityX for generating highly
realistic large-scale city with different modes of input; (ii) to prove that the Muti-Agent framework and
pcg protocol we designed are effective; (iii) to compare different LLMs on the proposed benchmark.

4.1 Benchmark Protocol

Dataset. To evaluate the effectiveness of the proposed CityX , we collect 50 city Semantic Maps, 50
city Height Fields, and 50 city OSM files in XML format. We also collect 50 sets of descriptions
about city styles and weather. Then, we feed them to our CityX to generate corresponding city
models, which are used to perform quantitative and qualitative comparisons.

Models. When generating and editing the 3D scenes, we adopt the leading GPT-4 as the large
language model with its public API keys. To ensure stable output from the LLM, we set both the
decoding temperature and the seed to 0.

Metrics: We use Executability Rate (ER@1) and Success Rate (SR@1) to evaluate the capabilities
of LLMs on our CityX . The former measures the proportion of proposed actions that can be
executed, and the latter is used to evaluate action correctness [44]. Additionally, we use a unified
evaluation standard as a reference. We categorize the aesthetics of city scenes into five levels: Poor (1
points)/Below Average (2 points)/Average (3 points)/Good (4 points)/Excellent (5 points).

7

O
SM

 fi
le

Se
m

an
tic

 m
ap

Sa
te

lli
te

 a
er

ia
l p

ho
to

gr
ap

h

Multimodal input

Please generate a modern city based on the OSM file/Semantic map/Satellite aerial photograph I provided.

Overhead View Street-Level View1 Street-Level View2 Street-Level View3

Figure 4: Urban scene generation with multimodal inputs, where we present an overhead view aligned
with the multimodal input perspective, along with three street-level views.

4.2 Main Result

Urban Scene Generation with Multimodal Inputs. We first show the ability of CityX to generate
large-scale urban scenes, as depicted in Figure 4. The results show that CityX is capable of generating
highly realistic urban scenes using multimodal data inputs, including OSM data, semantic maps, and
satellite images, demonstrating its effectiveness and flexibility in urban scene generation.

We also compare our method with other city generation approaches, as shown in Figure 3. The
results indicate that PersistantNature[34] and InfiniCity[6] have severe deformation issues throughout
the entire scene. While SceneDreamer[35] and CityDreamer[8] demonstrate improved structural
consistency, their building quality remains relatively low. While SceneX [9] achieves high quality, it
encounters issues with overlapping assets and a high duplication rate of buildings. In contrast, the
city generated by CityX demonstrates a regular geometric structure and high quality, which is devoid
of overlapping buildings and exhibits minimal repetition.

Aesthetic Evaluation. To better assess the quality of cities generated by CityX , we collect results
from various related works on urban generation and invite 30 volunteers and 5 experts in 3D modeling
to evaluate these works aesthetically. To ensure fairness, we anonymize all results. As shown in Table
2, the cities generated by CityX attain a "Good" level in aesthetic scoring, a distinction not achieved
by other works, demonstrating its highly realistic capabilities in city generation.

Specific Refinement Editing. CityX supports specific refinement editing for scene customization,
involving asset manipulation, weather adjustment, and style modification. We conduct relevant
experiments, as depicted in Figure 5. Based on the results, it’s clear that CityX performs well in
accurately controlling urban scenes to meet input requirements consistently.

Table 3: Ablation Study Results for Different
Components of the Protocol.

Description. Input Limitation ER@1 SR@1
✓ 36.00 41.67

✓ ✓ 37.00 51.35
✓ 44.00 56.82
✓ ✓ 69.00 60.87
✓ ✓ 73.00 61.64
✓ ✓ ✓ 94.00 82.98

Table 4: Comparing the performance of different
language models in city generation.

Model ER@1 SR@1
Llama2-7B[45] 27.00 59.26
Mistral[46] 78.00 61.54
Gemma-2B[47] 9.00 33.33
Gemma-7B[47] 39.00 69.23
GPT-3.5-turbo[48] 72.00 75.00
GPT-4[49] 91.00 81.32

8

Generate a Modern city. Turn the style to European style.

Generate a city at noon. Change the city scene to dusk. Change the city scene to midnight.

Generate a little city. Change the lake to grassland. Change the grassland into a forest.

Turn the style to little town style.

Figure 5: Performance of CityX in scene customization and refinement editing

4.3 Ablation Study of PCG Protocol.

Analysis of Different Components. To assess the impact of each component of the structured
encapsulation on the overall system, we conduct ablation experiments on individual parts of the
structured encapsulation, as shown in Table 3. The table demonstrates that when encapsulating PCG,
adding Description, Input, and Limitation all boost ER@1 and SR@1. Notably, including Description
leads to the highest increase, with SR@1 rising by 57.00% and ER@1 by 31.63%, significantly
enhancing the system’s Executability Rate and Success Rate. After adding Input, SR@1 and ER@1
increase by up to 21.34% and 25.00%, respectively. Similarly, with the inclusion of Limitation,
SR@1 and ER@1 see maximum increases of 22.11% and 25.00%. This suggests that incorporating
Input and Limitation can improve the system’s Executability Rate and Success Rate.

Comparing Agent Frameworks with Different LLMs To evaluate the effects of different large
language model variants on multi-agent frameworks, we assessed the system’s ER@1 and SR@1
using various LLM versions. As not all open-source models have visual perception capabilities, we
used GPT-4-Vision-Preview uniformly for visual feedback. To maintain experimental stability, the
temperature and seed for all LLMs were set to 0. The experiment utilized 50 description sets from
Section 4.1 dataset. Results are shown in Table 4. GPT-4 achieves the highest scores in both ER@1
and SR@1, with scores of 91.00% and 89.01%, respectively. Mistral ranks second in ER@1, with a
score of 78.00%, while GPT-3.5-turbo and Gemma-7B rank second and third in SR@1, with scores
of 75.00% and 69.23%, respectively. It is evident that Mistral and Gemma-7B, two open-source large
language models, perform comparably to GPT-3.5-turbo but still fall short of GPT-4’s performance.

5 Conclusions

In this paper, we propose a novel multi-modal controllable procedural content generation method
CityX to generate realistic, unbounded 3D cities. The proposed method supports multi-modal guided
conditions, such as OSM, semantic maps, and satellite images. The proposed method includes a
general protocol for integrating various PCG plugins and a multi-agent framework for transforming
instructions into executable Blender actions. Through this effective framework, CityX shows potential
for building an innovative ecosystem in 3D scene generation by bridging the gap between generated
assets and industrial requirements. Extensive experiments have demonstrated the effectiveness of our
method in creating high-quality, diverse, and unbounded cities guided by multi-modal conditions.

Societal Impacts. CityX generates high-quality urban through the use of the PCG Management
Protocol and Multi-Agent Framework, closing the gap between industrial application needs and the
quality of generative models. This approach is significant for building a new ecosystem based on
procedural content generation and benefits the entire PCG community.

9

Limitations. CityX has two drawbacks for future improvement. Firstly, we lack an efficient method
to accelerate parameter extraction in PCG, which requires significant manpower and resources.
Secondly, scene generation based on PCG methods is constrained by the inherent rules of PCG itself,
limiting the diversity of PCG generation techniques.

References
[1] Ben Poole, Ajay Jain, Jonathan T Barron, and Ben Mildenhall. Dreamfusion: Text-to-3d using

2d diffusion. In The Eleventh International Conference on Learning Representations, 2022.
[2] Chen-Hsuan Lin, Jun Gao, Luming Tang, Towaki Takikawa, Xiaohui Zeng, Xun Huang, Karsten

Kreis, Sanja Fidler, Ming-Yu Liu, and Tsung-Yi Lin. Magic3d: High-resolution text-to-3d
content creation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 300–309, 2023.

[3] Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl
Vondrick. Zero-1-to-3: Zero-shot one image to 3d object. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 9298–9309, 2023.

[4] Xiaoxiao Long, Yuan-Chen Guo, Cheng Lin, Yuan Liu, Zhiyang Dou, Lingjie Liu, Yuexin Ma,
Song-Hai Zhang, Marc Habermann, Christian Theobalt, et al. Wonder3d: Single image to 3d
using cross-domain diffusion. arXiv preprint arXiv:2310.15008, 2023.

[5] Vikram Voleti, Chun-Han Yao, Mark Boss, Adam Letts, David Pankratz, Dmitry Tochilkin,
Christian Laforte, Robin Rombach, and Varun Jampani. Sv3d: Novel multi-view synthesis and
3d generation from a single image using latent video diffusion. arXiv preprint arXiv:2403.12008,
2024.

[6] Chieh Hubert Lin, Hsin-Ying Lee, Willi Menapace, Menglei Chai, Aliaksandr Siarohin, Ming-
Hsuan Yang, and Sergey Tulyakov. Infinicity: Infinite-scale city synthesis. arXiv preprint
arXiv:2301.09637, 2023.

[7] Jie Deng, Wenhao Chai, Jianshu Guo, Qixuan Huang, Wenhao Hu, Jenq-Neng Hwang, and
Gaoang Wang. Citygen: Infinite and controllable 3d city layout generation. arXiv preprint
arXiv:2312.01508, 2023.

[8] Haozhe Xie, Zhaoxi Chen, Fangzhou Hong, and Ziwei Liu. Citydreamer: Compositional
generative model of unbounded 3d cities. arXiv preprint arXiv:2309.00610, 2023.

[9] Mengqi Zhou, Jun Hou, Chuanchen Luo, Yuxi Wang, Zhaoxiang Zhang, and Junran Peng.
Scenex: Procedural controllable large-scale scene generation via large-language models. arXiv
preprint arXiv:2403.15698, 2024.

[10] Yuanbo Xiangli, Linning Xu, Xingang Pan, Nanxuan Zhao, Anyi Rao, Christian Theobalt,
Bo Dai, and Dahua Lin. Bungeenerf: Progressive neural radiance field for extreme multi-scale
scene rendering. In European conference on computer vision, pages 106–122. Springer, 2022.

[11] Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-nerf: Scalable construc-
tion of large-scale nerfs for virtual fly-throughs. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 12922–12931, 2022.

[12] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P
Srinivasan, Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene
neural view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 8248–8258, 2022.

[13] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoor-
thi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis.
Communications of the ACM, 65(1):99–106, 2021.

[14] Chunyi Sun, Junlin Han, Weijian Deng, Xinlong Wang, Zishan Qin, and Stephen Gould. 3d-gpt:
Procedural 3d modeling with large language models. arXiv preprint arXiv:2310.12945, 2023.

[15] Ziniu Hu, Ahmet Iscen, Aashi Jain, Thomas Kipf, Yisong Yue, David A. Ross, Cordelia Schmid,
and Alireza Fathi. Scenecraft: An llm agent for synthesizing 3d scene as blender code, 2024.

[16] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang.
Hugginggpt: Solving ai tasks with chatgpt and its friends in huggingface. arXiv preprint
arXiv:2303.17580, 2023.

10

http://arxiv.org/abs/2310.15008
http://arxiv.org/abs/2403.12008
http://arxiv.org/abs/2301.09637
http://arxiv.org/abs/2312.01508
http://arxiv.org/abs/2309.00610
http://arxiv.org/abs/2403.15698
http://arxiv.org/abs/2310.12945
http://arxiv.org/abs/2303.17580

[17] Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as
zero-shot planners: Extracting actionable knowledge for embodied agents. In International
Conference on Machine Learning, pages 9118–9147. PMLR, 2022.

[18] Ran Gong, Qiuyuan Huang, Xiaojian Ma, Hoi Vo, Zane Durante, Yusuke Noda, Zilong Zheng,
Song-Chun Zhu, Demetri Terzopoulos, Li Fei-Fei, et al. Mindagent: Emergent gaming interac-
tion. arXiv preprint arXiv:2309.09971, 2023.

[19] Andy Zeng, Maria Attarian, Brian Ichter, Krzysztof Choromanski, Adrian Wong, Stefan Welker,
Federico Tombari, Aveek Purohit, Michael Ryoo, Vikas Sindhwani, et al. Socratic models:
Composing zero-shot multimodal reasoning with language. arXiv preprint arXiv:2204.00598,
2022.

[20] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan.
Visual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

[21] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023.

[22] Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin
Li, Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for
open-world enviroments via large language models with text-based knowledge and memory.
arXiv preprint arXiv:2305.17144, 2023.

[23] Hongxin Li, Jingran Su, Yuntao Chen, Qing Li, and Zhaoxiang Zhang. Sheetcopilot: Bring-
ing software productivity to the next level through large language models. arXiv preprint
arXiv:2305.19308, 2023.

[24] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[25] Krzysztof Czerwinski. Autogpt. https://github.com/Significant-Gravitas/AutoGPT,
2023. v0.5.1.

[26] Yohei Nakajima. Babyagi. https://github.com/yoheinakajima/babyagi, 2023.

[27] Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang,
Zhaopeng Tu, and Shuming Shi. Encouraging divergent thinking in large language models
through multi-agent debate. May 2023.

[28] Yilun Du, Shuang Li, Antonio Torralba, and Igor Mordatch. Improving factuality and reasoning
in language models through multiagent debate.

[29] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun
Zhang, Shaokun Zhang, Jiale Liu, AhmedHassan Awadallah, RyenW White, Doug Burger, and
Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation. Oct
2023.

[30] Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution
image synthesis. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Jun 2021.

[31] Zekun Hao, Arun Mallya, Serge Belongie, and Ming-Yu Liu. Gancraft: Unsupervised 3d neural
rendering of minecraft worlds. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 14072–14082, 2021.

[32] Arun Mallya, Ting-Chun Wang, Karan Sapra, and Ming-Yu Liu. World-Consistent Video-to-
Video Synthesis, page 359–378. Jan 2020.

[33] Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan Zhu. Semantic image synthesis
with spatially-adaptive normalization. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), Jun 2019.

[34] Lucy Chai, Richard Tucker, Zhengqi Li, Phillip Isola, and Noah Snavely. Persistent nature: A
generative model of unbounded 3d worlds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 20863–20874, 2023.

11

http://arxiv.org/abs/2309.09971
http://arxiv.org/abs/2204.00598
http://arxiv.org/abs/2303.04671
http://arxiv.org/abs/2305.16291
http://arxiv.org/abs/2305.17144
http://arxiv.org/abs/2305.19308
http://arxiv.org/abs/2107.03374
https://github.com/Significant-Gravitas/AutoGPT
https://github.com/yoheinakajima/babyagi

[35] Zhaoxi Chen, Guangcong Wang, and Ziwei Liu. Scenedreamer: Unbounded 3d scene generation
from 2d image collections. arXiv preprint arXiv:2302.01330, 2023.

[36] Cristina Gasch, José Sotoca, Miguel Chover, Inmaculada Remolar, and Cristina Rebollo.
Procedural modeling of plant ecosystems maximizing vegetation cover. Multimedia Tools and
Applications, 81, 05 2022.

[37] Jian Zhang, Chang-bo Wang, Hong Qin, Yi Chen, and Yan Gao. Procedural modeling of rivers
from single image toward natural scene production. The Visual Computer, 35, 02 2019.

[38] Markus Lipp, Daniel Scherzer, Peter Wonka, and Michael Wimmer. Interactive modeling of
city layouts using layers of procedural content. In Computer Graphics Forum, volume 30, pages
345–354. Wiley Online Library, 2011.

[39] Jerry O Talton, Yu Lou, Steve Lesser, Jared Duke, Radomír Mech, and Vladlen Koltun. Metropo-
lis procedural modeling. ACM Trans. Graph., 30(2):11–1, 2011.

[40] Carlos Vanegas, Tom Kelly, Basil Weber, Jan Halatsch, Daniel Aliaga, and Pascal Müller.
Procedural generation of parcels in urban modeling. Computer Graphics Forum, 31:681–690,
05 2012.

[41] Yong-Liang Yang, Jun Wang, Etienne Vouga, and Peter Wonka. Urban pattern: Layout design
by hierarchical domain splitting. ACM Transactions on Graphics (Proceedings of SIGGRAPH
Asia 2013), 32:Article No. xx, 2013.

[42] Yoav Parish and Pascal Müller. Procedural modeling of cities. volume 2001, pages 301–308,
08 2001.

[43] OpenAI. Gpt-4v(ision) system card. System Card, 2023. Version 1.0.

[44] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[45] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes,
Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony
Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian
Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta,
Kalyan Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiao-
qing Ellen Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng
Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation
and fine-tuned chat models, 2023.

[46] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

[47] Google DeepMind Gemma Team. Gemma: Open models based on gemini research and
technology. See Contributions and Acknowledgments section for full author list. Please send
correspondence to gemma-1-report@google.com.

[48] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[49] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red
Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Moham-
mad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher

12

http://arxiv.org/abs/2302.01330
http://arxiv.org/abs/2107.03374

Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann,
Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis,
Derek Chen, Sully Chen, Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey
Chu, Hyung Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux,
Thomas Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling,
Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko
Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie Georges, Christian
Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-Lopes, Jonathan Gordon,
Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo,
Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny Hsu, Shengli
Hu, Xin Hu, Joost Huizingi, Shantanu Jain, Shawn Jain, et al. Gpt-4 technical report, 2023.

13

	Introduction
	Related Works
	Methods
	PCG Management Protocol
	Multi-Agent Framework

	Experiments
	Benchmark Protocol
	Main Result
	Ablation Study of PCG Protocol.

	Conclusions

