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Abstract—Autonomous Vehicles (AVs) heavily rely on sensors
and communication networks like Global Positioning System
(GPS) to navigate autonomously. Prior research has indicated
that networks like GPS are vulnerable to cyber-attacks such as
spoofing and jamming, thus posing serious risks like navigation
errors and system failures. These threats are expected to intensify
with the widespread deployment of AVs, making it crucial to
detect and mitigate such attacks. This paper proposes GPS
Intrusion Detection System, or GPS-IDS, an Anomaly Behavior
Analysis (ABA)-based intrusion detection framework to detect
GPS spoofing attacks on AVs. The framework uses a novel
physics-based vehicle behavior model where a GPS navigation
model is integrated into the conventional dynamic bicycle model
for accurate AV behavior representation. Temporal features
derived from this behavior model are analyzed using machine
learning to detect normal and abnormal navigation behavior.
The performance of the GPS-IDS framework is evaluated on the
AV-GPS-Dataset — a real-world dataset collected by the team
using an AV testbed. The dataset has been publicly released for
the global research community. To the best of our knowledge,
this dataset is the first of its kind and will serve as a useful
resource to address such security challenges.

Index Terms—Autonomous Vehicle, Anomaly Detection, AV-
GPS-Dataset, GPS Attacks, Intrusion Detection System, Physics-
based Behavior Modeling, Modified Dynamic Bicycle Model.

I. INTRODUCTION

EHICLES are getting increasingly autonomous and be-
V coming ever more reliant on onboard sensors and com-
munication networks, aiming to make transportation faster,
safer, and environmentally sustainable by reducing human
intervention in driving tasks [1]], [70]]. Researchers have shown
human error to be the cause of over 90% accidents, resulting in
40 thousand deaths and over 2 million injuries annually in the
United States alone [2]], [3] — a statistic that will be reduced
with the transition to AVs [4]]. AVs rely on Automotive Sensing,
a collection of diverse sensors that enable environmental per-
ception and safe navigation without requiring constant human
input [5]]. Automotive sensing is broadly categorized into three
types: Self-sensing, Surrounding-sensing, and Localization |3].
Self-sensing refers to how an autonomous vehicle gathers
and interprets information about its own state, including its
position, velocity, and acceleration. Surrounding-sensing is
the ability of a vehicle to perceive its environment, like
recognizing traffic signs, understanding weather conditions, or
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measuring the state of other vehicles around it. Localization
determines the local and global positions of the vehicle and
helps it to navigate safely to the desired destination. For self-
sensing and surrounding sensing, AVs use an array of sensors
like Inertial Measurement Units (IMUs), gyroscopes, odome-
ters, Controller Area Network (CAN) bus, cameras, Light
Detection and Ranging (LiDARs), etc. [6]. For localization
and navigation, they rely on satellite-based navigation systems
like Global Navigation Satellite System (GNSS) [/7].

GNSSs like GPS (United States), GLONASS (Russian)
[35], BeiDou (China) [36], and Galileo (European Union)
[37], provide geolocation and time information to a receiver
anywhere on or near the Earth. Being the pioneering system,
GPS utilizes a 24-satellite constellation to provide its users
with highly precise and accurate location and time information
for navigation [38]]. GPS offers two distinct variants: a secure
military-grade GPS that is exclusively accessible to the United
States military branches and a civilian GPS that is available
for public use [39]. Most autonomous systems, including
autonomous vehicles, robots, and drones, rely on the latter
variant for navigational purposes. This heavy reliance on
civilian GPS raises significant concerns due to the absence of
encryption or authentication mechanisms, unlike the military-
grade GPS [40]]. Researchers have demonstrated that civilian
GPS is vulnerable to jamming and spoofing attacks, and
commercially available off-the-shelf GPS receivers lack the
capability to detect and counteract such attacks [38]], [40]-
[42]. Various GPS spoofing techniques, including Lift-off-
delay [44]], Lift-off-aligned [45]], Meaconing or Replay [45],
Jamming and Spoofing [46], and Trajectory Spoofing [47],
pose serious threats to the integrity of GPS. Such spoofing
attacks can result in navigational errors, potential vehicle
hijacking, or fatal collisions.

Motivated by these challenges, this paper presents GPS-
IDS, an Anomaly Behavior Analysis-based Intrusion Detection
System that uses a novel physics-based vehicle behavior model
— a modification of the conventional dynamic bicycle model,
to detect GPS spoofing attacks on AVs. Temporal features
extracted from this vehicle behavior model are used to capture
the normal behavior of the AV. Afterward, Machine Learning
models are employed to detect the modeled normal behavior
from abnormal behavior.

The main contributions of this paper are as follows:

o The paper presents the Autonomous Vehicle Behavior
Model— a modified dynamic bicycle model that in-
tegrates an autonomous GPS navigation model. This
modification accurately represents the normal navigation
behavior of an AV, capturing the lateral dynamics and
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states. Temporal features extracted from the AV Behavior
Model are used to observe the vehicle’s normal behavior.
This normal behavior is separated from the attacks using
machine learning techniques.

o The paper introduces the “AV-GPS-Dataset” that captures
44 features of GPS-guided navigation of AVs with and
without cyber-attacks. In contrast to the existing related
datasets collected from simulated environments [8]], [[10],
[11]], this dataset is collected from practical field exper-
iments with real-world GPS spoofing attacks performed
on an autonomous vehicle testbed.

o The proposed GPS-IDS framework is evaluated on the
AV-GPS-Dataset, showing an F1 score of up to 94.4%
with up to 13s detection time improvement compared to
the Extended Kalman Filter (EKF) detector implemented
in the experimental setup.

The rest of the paper is organized as follows: Section
discusses the related work; Section [Tl introduces the GPS-IDS
framework and explains the Autonomous Vehicle Behavior
Model; Section presents the experimental evaluation of
the GPS-IDS framework along with the dataset details, and
Section [V] concludes the paper.

II. RELATED WORK

A. Vehicle Models

1) Physics-based Model: A physics-based vehicle model
is a mathematical representation that simulates the vehicle’s
physical behavior using factors like kinematics, dynamics,
motion, forces, and environmental interactions. In [15]], the
authors adopted a physics-based dynamic vehicle model in-
corporating an EKF estimator to determine the vehicle’s
longitudinal and lateral velocities and yaw rate. In [30],
Kong et al. explored two physics-based vehicle models,
namely kinematic and dynamic bicycle models, for model-
based controller design in autonomous driving and presented
a comparison between them using experimental data. Several
research contributions have employed software tools such
as Modelica, Robot Operating System (ROS), Gazebo, and
Simulink to simulate physics-based vehicle models or their
components. Notable applications include racing car modeling
[16], vehicle drivability modeling [9]], heterogeneous physical
system modeling, and simulating AV testbeds [[17].

2) Data-centric Model: A data-centric vehicle model uses
data-driven techniques and machine learning algorithms to rep-
resent the vehicle system. The model analyzes a large volume
of data from sensors and sources to determine the vehicle’s
actions. In [[18]] the authors proposed a data-driven modeling
approach based on Deep Neural Networks (DNNs) to compute
and predict the dynamic characteristics of a vehicle. In [19],
a data-driven system identification and control method is pro-
posed for autonomous vehicles, where several vehicle dynamic
variables are measured and corresponding data is collected to
model a physical vehicle. In [20]], the authors conducted a
comparative analysis between physical and data-driven vehicle
models under real-world driving conditions.

B. Intrusion Detection System (IDS)

Intrusion Detection Systems or IDSs are software designed
to detect cyber-attacks and can be classified into four types
[12]: 1) Signature-based IDS, 2) Anomaly-based IDS, 3)
Specification-based IDS, and 4) Hybrid IDS. Signature-based
IDSs rely on a pre-learned attack signature database, where
each observation matched with an entry in the attack database
is considered as an attack. Signature-based IDSs heavily rely
on an up-to-date attack signature database and are unable
to detect new or modified attacks [13]. An Anomaly-based
IDS relies on modeling techniques to capture the system’s
normal behavior, wherein any observed behavior outside the
model-defined norm is classified as malicious. This reliance on
normal behavior models allows Anomaly-based IDSs to detect
new or modified attacks at the cost of increased modeling
complexity [14]. Specification-based IDSs use a set of rules
and policies that define the expected behavior of different
system components such as sensor nodes or motor commands.
Hybrid IDSs are a combination of Signature-based, Anomaly-
based, and Specification-based IDSs. The Anomaly-based IDS
approach presented in this work detects GPS spoofing attacks
on AVs by utilizing an extensive physics-based AV behavior
model and real-life vehicular data, aiming to use a more
accurate operational baseline and overcome the high error rates
present in Anomaly-based IDSs.

C. Cyber-attacks on Vehicles

The increasing deployment of AVs increases the cyber-
attack surfaces within the vehicle system that can be poten-
tially exploited. In [56], Hoppe et al. exploited vulnerabilities
present in the CAN-bus of a vehicle to attack the windows,
lights, and airbags. Similarly, Miller et al. [S7] successfully
attacked a Jeep Cherokee 2014 by reprogramming a gateway
chip in the head unit of the vehicle. The attack enabled the
vehicle to send arbitrary CAN messages, allowing access to
different critical subsystems like braking and steering [58]].
Similar attacks have been demonstrated against Toyota Prius
2010 and Ford Escape 2010 [61]], by targeting different ve-
hicular Electronic Control Units (ECU) and head units [60].
Similar to the CAN bus attacks, researchers have successfully
targeted navigation systems in AVs like the GPS receiver [21]],
leading to hijacking attacks.

D. GNSS Security

In this section, we highlight the research aimed at detecting
GNSS attacks. GNSS security literature can be classified into
two broad categories: (1) GPS signal characteristics-based
approach [21]], [22f, [23[], [24], [25], [26], and (2) Machine
learning-based approach [65], [69] [66], [10]], [67]], [68]. The
GPS signal characteristics-based approaches rely on signal
processing techniques to detect attacks. For instance, in [21]],
Psiaki and Humphreys proposed a GPS spoofing attack detec-
tion scheme based on the direction-of-arrival (DOA) induction.
He et al. [23] proposed the use of GPS signal distortion to
detect GPS spoofing attacks. For connected and autonomous
vehicles, an anomaly detection model is proposed by Yang
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et al. [24] to detect GPS spoofing on the localization system
using the “Learning From Demonstration” technique. Milaat
and Liu [25] proposed a decentralized technique where vehi-
cles exchange GPS code pseudo-range values with neighbors
using short-range communications to detect high correlations
during spoofed GPS signal arrival. On the other hand, machine
learning-based approaches rely on machine learning and data
analytics techniques to detect attacks. Researchers have used
one-class classifiers [10f], Artificial Neural Networks [65],
Long Short Term Memory (LSTM) networks [66], [67] to
detect GPS attacks. However, the majority of these works
adopt a segregated approach focused on sensor node-specific
detection techniques and either use a small (and restrictive)
GPS dataset, or use an attack dataset collected from simulated
environments using tools like Matlab and Gazebo, lacking the
representation of the real world.

This paper overcomes these limitations by introducing an
anomaly-based intrusion detection approach and using real-
world data. The approach relies on a novel modified dynamic
bicycle model with GPS navigation to model the normal be-
havior of an AV. Temporal features highlighted in this behavior
model are extracted from real-world experiments to model
the vehicle’s normal navigation behavior. Machine learning
techniques are then used to classify the normal navigation
behavior from the abnormal.

III. GPS INTRUSION DETECTION SYSTEM (GPS-IDS)

GPS-IDS is an Anomaly Behavior Analysis-based Intrusion
Detection System designed to identify GPS attacks on AVs
by continuously monitoring the behavior of the vehicle and
considering any deviation from the expected behavior as
anomalous. The framework relies on a physics-based vehicle
model, that is a modified dynamic bicycle model, called the
Autonomous Vehicle Behavior Model to represent the vehicle’s
normal behavior, as the physics model captures the vehicle’ps
state at any instantaneous time t. Features highlighted in
the physics model are used in machine learning analysis to
detect anomalous behavior of the vehicle. Fig. [T] shows the
architecture of the GPS-IDS framework.
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Fig. 1: GPS-IDS Architecture

A. Components of GPS-IDS

The GPS-IDS framework has two modules: the Data Col-
lection Module, and the Anomaly Behavior Analysis Module.

1) Data Collection Module: This module collects the raw
data from the AV system and stores it in a shared database.
Raw data includes GPS signals and an ongoing stream of
vehicle dynamics data, which are obtained from the onboard
state-measuring sensors.

2) Anomaly Behavior Analysis Module: This module reads
the raw data from the shared database and performs Anomaly
Behavior Analysis to classify the data as normal or abnormal.

B. Anomaly Behavior Analysis (ABA) for GPS-IDS

Satam et al. have presented an IDS for wireless networks
based on Anomaly Behavior Analysis [13]], [27], which forms
the basis of this work. The presented GPS-IDS is defined over
a finite set of driving events U. Set U is partitioned into two
subsets: Normal events N and Abnormal or Attack events
A, such that NUA = U and NN A = (. To characterize
U, a representation map R is used, which maps events in U
to patterns in U% such that U B, UR. Likewise, N® and
AT respectively represent the events in N and A, such that
N E) NE A £> AR and N U AR = UR. A detector D
is defined as D = (fnorm,M); where form is the normal
behavior characterization function expressed as fporm : UE x
M = 1[0,1] and M is the system memory that stores the
normal behavior model extracted from the set of normal events
NZE. Function fnorm specifies the degree of abnormality of a
sample s € U by comparing it with M. The higher the value
of frorm(s, M), the more abnormal the sample is. If the value
of frorm(s, M) exceeds a predefined threshold T, detector D
raises an alarm indicating the occurrence of an abnormal or
attack event. We can consider D for any sample s € U’ as:

D(s) Abnormal if  frorm(s,M)>T
° Normal otherwise

Detection takes place when the detector D classifies a
sample as abnormal, regardless of whether it is genuinely an
anomaly or a regular sample that has been wrongly classified
as one. The detection errors are defined over a test set U}
which is a subset of U, UF C U*. The detector considers
two kinds of errors: False Positives and False Negatives.
A False Positive detection occurs when a normal sample
s € NT is detected as an abnormal event and is defined as
et = {s € N®|D(s) = abnormal}, while a False Negative
detection occurs when the detector classifies an abnormal
sample s € A as a normal event (undetected anomalies),
that is e~ = {s € A®|D(s) = normal}. The objective
of GPS-IDS is to tune the predefined threshold T so that
the overall error is minimized. Particularly, we prioritize the
minimization of False Negative errors, as these undetected
attacks pose greater risks compared to false alarms in the
context of autonomous driving.

C. Autonomous Vehicle Behavior Model

In order to establish a comprehensive behavior model of
AVs, it is essential to consider four key components: (1)
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Perception and Localization, (2) State Estimation, (3) Motion
Planning, and (4) Control [28|]. Perception and Localization
rely on a combination of internal and external sensors, such
as IMUs, Cameras, LiDARs, GPS, etc., to collect information
about the surrounding environment. The remaining three com-
ponents require a mathematical representation of the vehicle
that encompasses its dynamics and motion. This study focuses
specifically on GPS-guided localization in AVs, aiming to
investigate the impact of a spoofing attack on the vehicle’s
dynamics and motion. Therefore, predicting the dynamic state
of the vehicle becomes crucial. To achieve this, a simple
2 Degrees of Freedom (2 DOF) lateral dynamics model is
considered, and the bicycle model proposed by Rajamani et
al. [29] is employed. Fig. 2] depicts the dynamic bicycle model
of a vehicle in a 2-dimensional inertial frame.

1) Dynamic Bicycle Model: The dynamic bicycle model
is a simplified representation of a vehicle’s dynamics and
considers the effects of external forces and yaw moments
acting on the vehicle, which results in an accurate calculation
of dynamic parameters [29]. In a dynamic bicycle model, the
inertial position coordinates and the orientation of the vehicle
are defined as follows [30]:

vy =& =wvcos(y + B) (1)
vy =y =vsin(y + B) 2)
rz&z%sinﬁ 3)

where x and y are the coordinates of the center of mass
of the vehicle in frame (X, Y); v, and v, represent the
longitudinal and lateral velocities of the vehicle, respectively;
1) is the yaw angle, which is the orientation of the vehicle with
respect to the x-axis; 7 is the yaw rate or the rate of change
of the yaw angle; /3 is the angle of the current velocity of
the center of mass with respect to the longitudinal axis of the
vehicle; 0 is the controlled steering angle of the front wheels;
and /¢ and [, are the distances of the front and the rear wheel

Y
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Fig. 2: Dynamic bicycle model of an autonomous vehicle in
a 2-dimensional inertial frame

axles from the center of mass, respectively. The differential
equations associated with the dynamic bicycle model are:

B =1y +a, 4

y:—¢r+§#ﬂﬁam6+F@) (5)
. 2

F=v = (sFy =l Fy) (©6)

ijjcosw—ysinz/) @)

Y = isine — g cos ®)

where 2 and y denote the longitudinal and lateral velocities
of the vehicle, respectively; a,, is the acceleration of the center
of the mass; ¢ or r is the yaw rate; m and I, denote the
vehicle’s mass and yaw inertia, respectively; and Fy; and F,
denote the lateral tire forces at the front and rear wheels of
the vehicle, respectively. From the dynamic bicycle model,
Newton-Euler’s equations of motion are defined as follows:

F, —m U'I—z/}vy | —=Fyppcosd — Fyysind — Fy,
F,| v'y—@[w;c | Fypcosd — Fypsind + F,

7 =1L =Li=1;(F,cosé — Fyssind) — [,F,, (10)

These dynamics can be simplified by disregarding the
aerodynamic resistance and setting the longitudinal tire forces,
Fyr and F,,, to zero. The lateral tire forces, F,; and F,,
are calculated by using a linear tire model, which simplifies
the nonlinear characteristics of tire dynamics by establishing a
linear relationship between the tire slip angles and the resulting
tire forces. Considering that, F,y and F),. are defined as [31]):

Fyy=—-Cyray (11) Fy = —Cyray (12)

where Cyr and Cy, are the cornering stiffness coefficients,

and oy and «, are the slip angles of the front and rear wheels,
respectively. Assuming small slip angles, we obtain [31]:

vy—l—lfr_ Vy — L7

6 (13) o, =

af = (14)
Finally, a simplified 2 DOF non-linear state space represen-

tation of the lateral dynamics of the vehicle can be expressed
as follows [62], [63]]:

11:y _ |an A vy b1 5 (15)
T A1 QA29 r b21
where,
Cyf + C!ﬂ’ lnyf — lTCyT
= ——-X 312 = 72
muy muz
1+:Cy — 1,Cyy 12C,r —12C,,
Ay, — f yfIz Y Ay — f yflvr Y
C 1+C
b = —m‘if by = *%

In the state space model of equation the input is the
steering angle ¢ and the states are the lateral velocity v, and
yaw rate r.
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2) Perception/ Localization: The GPS enables the vehicle
to determine its position and localize to the destination. Since
this paper focuses on presenting a GPS intrusion detection
system, only GPS-based localization is considered, and camera
or vision sensor-based perception is not taken into account. To
ensure safe GPS-guided localization for autonomous vehicles,
it is necessary to continuously monitor various parameters
such as GPS latitude and longitude, signal quality, GPS
Dilution of Precision (DOP), and the number of satellites
the vehicle is locked with. The normal behavior of the GPS
signal for vehicular localization can be modeled by constantly
monitoring the following parameters:

Sgps(t) = (lat, lon, dop, satiock, st count )" (16)

where sg,5(t) is the incoming GPS signal from satellites
at time ¢; lat and lon are the GPS latitude and longitude at
t, respectively; dop denotes the Dilution of Precision (DOP)
or the quality of the incoming GPS signal at ¢; and satj,cx
and sat.ount respectively denote the number of satellites the
vehicle is locked with and the number of available satellites at
t. It is noteworthy that the current GPS-guided localization be-
havior model only considers positional parameters and signal
strength, excluding the analysis of physical layer parameters
of GPS signal due to existing research on such GPS attack
detectors, as outlined in section [[I-Di

3) State Estimation: One of the well-established solutions
for estimating the state of nonlinear systems is the Extended
Kalman Filter or EKF. It integrates measurements from mul-
tiple sensors with a system model to estimate the state of
the system with improved accuracy [53]. In the context of
a GPS-guided autonomous vehicle, the EKF utilizes multiple
sensor measurements in conjunction with the dynamic vehicle
model to make accurate predictions about the vehicle’s state,
including its position, orientation, velocity, and other relevant
parameters. This estimation procedure takes into account the
nonlinear relationship between the measurements and the
position, while also considering measurement noise. As high-
lighted in the Related Work section, EKF state estimator is
capable of detecting sensor anomalies and attacks against au-
tonomous vehicles by monitoring the measurement deviations
of multi-sensor readings [48], [55]. A similar EKF dynamic
state estimator has been employed in our vehicle model and
experimental testbed. In later sections, it will be shown that
the GPS-IDS approach is able to detect a GPS spoofing attack
faster than the employed EKF state estimation-based detection
approach, which is supported by experimental validation.

For ease of description, we can rewrite equation [I5] in the
following forms:

X(t) = fstate(X(t), u(t
() ftt(()u())} (17)
X = ax + bu

where vehicle state x = [v, r]’, control input u = [d],

and fsiqte 1S the nonlinear function reproducing equation
According to the dynamic bicycle model, the normal behavior
of the vehicle’s lateral dynamics is characterized by the state
parameters, v, and r, and the steering angle ¢. In conjunction
with the lateral dynamics model, the EKF allows us to fuse and

compare multiple state-measuring sensor readings to estimate
the vehicle’s state with improved accuracy. To incorporate
an EKF-based estimation, the vehicle can be described as a
discrete time-varying system in the following forms:

Xp1 = fed(Xp, g, Wi) Yii1 = Jed(Xk, Ex)

where f.q is the prediction equation; X, and uy are the
state and the input at the k*" time, respectively; W is the
prediction noise; g.q is the observation equation; and FEj
denotes the observation noise. The Jacobian matrix of the
nonlinear prediction and observation equation are defined as:

agcd
ox |.
Tk

G =
Tp—1,uk
Thus, the nonlinear system can be transformed into a linear
system with the following equations:

X1 = F'xp + Wi yk+1:GXk+Ek

The update process is as follows:
Piiik = PPy Fl +Q
Skt1k = GePry1pGL +R

Piiipr1r = (T =K1 xGe)P i
where Q is the covariance matrix of the prediction noise, R
is the covariance matrix of the observation noise, and I is an
identity matrix. Thus:

Xk+1‘k=Fﬁk‘k+Wk yk-o—l\k:Gik‘lk—"Ek

The final EKF estimated value can be obtained by:

Xpp1)kt1 = Thpie + Kppre (Vg1 = Yegapn)

4) Motion Planning: The vehicle plans a safe and efficient
path to follow from its current position (z,y) to the target
destination (z,y:). It uses GPS to determine its current
position and generates a continuous sequence of target yaw
angles, 1;(t) and cross-track errors, e(t) to guide itself to the
desired path. The cross-track error refers to the perpendicular
distance of the vehicle from the current position to the desired
path. Algorithm [I] outlines the target yaw angle calculation
process from GPS coordinates [32].

Algorithm 1 Target Yaw Calculation from GPS Coordinates

1: Function TargetYawFromGPS  (current_latitude,
current_longitude, target_latitude, target_longitude)
while (T'argetY awFromGPS = True) do
A longitude <+ target_longitude — current_longitude
p = sin (A longitude) X cos (target_latitude)
q = cos (current_latitude) x sin (target_latitude)
— sin (current_latitude) X cos (target_latitude)
x cos (A longitude)
¥y = arctan(p, q)
7:  return
8: end while

[¢; = target yaw angle]
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From the calculated target yaw, ¢;(t) and current yaw, v (t),
the motion planning algorithm can calculate the instantaneous
cross-track error, e(t) using the following relationship:

e(t) ocsin (Y (t) — (t))

From we can say that when the vehicle is traveling
along the desired path, 1(t) = v¢(t), and e(t) = 0. When the
vehicle deviates from the desired path, ¢ (t) differs from v, (¢)
and the e(t) increases accordingly. In general, an increase in
the difference between the target yaw angle and the current
yaw angle leads to a corresponding amplification in the cross-
track error.

5) Controller: The vehicle requires a control algorithm to
mitigate the cross-track error and navigate safely. There are
different types of controllers depending on vehicle-specific
models and computational resources, such as Model Predic-
tive Controller (MPC), Fuzzy Logic Controller, Proportional-
Integral-Differential (PID) Controller, etc. In this study, we
focus on the PID controller as it is one of the most widely
used control algorithms and easy to implement on testbeds.

The PID controller is typically used for controlling the
Position (e.g. latitude and longitude) and Atfitude (e.g. yaw/
heading angle) of an AV. The controller continuously adjusts
the steering and acceleration control signals to minimize the
cross-track error. According to the proportional (P), integral
(I), and derivative (D) terms of e(¢), the control signal u.(t)
is obtained, which is formulated as follows:

(18)

de(t)
dt

t
wolt) = Ke(t) + K, / c(t)dt + K. (19)
0

where K, K;, and Ky are the Proportional, Integral,
and Differential gain coefficients, respectively. The term e(t)
t

denotes the present cross-track error, [ e(t)dt denotes the
0

accumulated cross-track error over time, represented as the
definite integral of e(t) with respect to time, and dil—(tt) is the
change in cross-track error with respect to time, represented
as the derivative of e(t) with respect to time. The final control
signal us(¢) will be comprised of an acceleration component

and a steering angle component, which can be expressed as:

Us(t) = Ugee(t) + Usr (t) = Koeca(t) + Ko 6(t)  (20)

where uqcq.(t) and ug,-(t) are the acceleration and steering
control signal components, respectively. K,.. is the propor-
tional gain for acceleration, K, is the proportional gain for
steering, and a(t) and §(t) are instantaneous acceleration and
steering angle, respectively. Fig. [3|illustrates the PID cascade
control architecture used to control the position and attitude
of the AV model.

Derived from the discussed software components, the archi-
tecture of the Autonomous Vehicle Behavior Model is depicted

in Fig. {]

D. Attacker Model

We focus on the GPS spoofing attack that interferes with
the target AV by injecting a malicious GPS signal into the
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Fig. 3: PID Cascade Control Architecture

vehicle’s GPS receiver unit. The attacker is modeled as a mali-
cious entity capable of generating, recording, and transmitting
fake GPS signals with false coordinates corresponding to any
location of his choice wirelessly using a spoofer device. The
attacker can be an internal entity who is inside the victim
vehicle and very close to the GPS receiver, or an external entity
who is moving along with the victim vehicle with a directional
antenna pointed toward it and staying within a specified range.
It is assumed that the attacker only knows the current location
of the victim vehicle and has no knowledge about (1) the
low-level control algorithm settings; (2) control commands
from the autonomous navigation system of the vehicle. In
this study, it is shown that even though the attacker has no
prior knowledge about the vehicle’s control system, a GPS
spoofing attack is capable of compromising the closed-loop
control system and the measured states of the vehicle.

1) Mathematical model of the spoofed GPS signal: To
model a spoofed GPS signal, the attacker must replicate the
Radio Frequency carrier wave, the Pseudorandom noise code
(PRN), and the data bits of each GPS signal that he or she
intends to spoof. As stated by Psiaki and Humphreys, [33] a
typical GPS signal y(¢) takes the following form:

N

y(t) = Re{ > AiDilt - m(VICift — (1))’ }

=1
Y =wct — ¢i(t)

where NV is the number of individual signals transmitted by
each GPS satellite. A;, D;(t), and C;(t) correspond to the
carrier amplitude, data bit stream, and spreading code (often
a Binary Phase Shift Keying, BPSK-PRN code or a Binary
Offset Carrier, BOC-PRN code) of the ith signal, respectively.
7;(t) is the ith signal’s code phase, w,. is the nominal carrier
frequency, and ¢;(¢) is the ith beat carrier phase. The attacker
sends a set of spoofed signals y,,¢(t) that are similar to as

follows:
Nspy

Yops (8) =Re{ 3= A Dilt = 7., (DGt = 73, (D] }

=1
52 = Wet — ¢ispf (t)

where N, is the number of spoofed signals (typically
Ngpr = N). Each spoofed signal must have the same spread-
ing code C;(t) as the corresponding true signal in order to de-
ceive the receiver, and usually, it broadcasts its best estimate of
the same data bit stream D;(t). The spoofed amplitudes, code
phases, and carrier phases are, respectively, Aisp £ Tigps (1),
and ¢, (t) fori =1,..., Ngps. These quantities are likely to
differ from their true counterparts for reasons that are specific
to the type of attack that is being mounted. During a spoofing
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Fig. 4: Autonomous Vehicle Behavior Model

attack, the total signal received, ytotq; () at the victim vehicle’s
GPS receiver antenna is:

Yeotat () = Y(8) + Ysps (£) + v(1)

where v(t) is the noise component, which can either be
naturally generated or be contributed by the attacker.

2) Mathematical model of the attack impacts: If the attack
is successful, the GPS receiver of the vehicle will receive
incorrect location information, and the current latitude and
longitude will be replaced by spoofed latitude and longitude.
The function TargetY awFromGPS() in Algorithm |1| takes
the spoofed latitude and longitude as inputs and calculates the
spoofed yaw angle, v, .. This means that the proportionality
of equation |18| calculates a spoofed cross-track error, e, ¢(t).
The PID controller takes e, () as input and equation |19 and
become:

2n

¢
Kpespr(t) + Ki [ espr(t)dt + Kdde%f(t)
0

Kacesps(t) + Ksirdspr (1)

Uspf(t) =

(22)

where uspr(t), asps(t), and 04, (t) represent the spoofed
control signal, spoofed acceleration, and spoofed steering an-
gle, respectively. u,), 7 (t) goes to the vehicle system as actuator
command, which results in dsp,¢(t) and the vehicle loses its
control at a time instance t. The state space representation of

equation 15| thus becomes:
ap| |vy b1
] [7] e Bl

) -
7'"sp f N a1

where [v’ysp f 7spr] 18 the spoofed lateral dynamic state
of the vehicle. In this state, the vehicle will start to deviate
from its normal lateral dynamic behavior and move toward
the spoofed GPS location. Based on the discussion, the flow

of the GPS spoofing attack is summarized in Algorithm

(23)

E. Problem Statement

In autonomous driving applications, GPS spoofing attacks
involve the deliberate manipulation of GPS signals to deceive
the vehicle’s onboard navigation system, which can cause the
vehicle to deviate from its intended path, leading to accidents
or even hijacking. To ensure the safety of passengers and
pedestrians, attacks must be detected in a timely manner.
Based on the above discussions, the GPS intrusion detection
problem investigated in this paper can be stated as follows:

Algorithm 2 GPS Spoofing Attack
Input: Spoofed signal ys, ¢, Duration of attack #,¢¢qck»
Bias angle caused by attack 1J, Current state X,
Spoofed state X, s, current_latitude, current_longitude
spoofed_latitude, spoofed_longitude
Output: Attack flag A, State update X,,¢q,

1: Attacker sends v,

2: if receiver antenna receives Yiotal = Y + Ysps + v then
3: A = True

4: else

5 A = False

6:  while (t4¢tqcx = True) do
7.

8

9

Compute 9, using T'argetY awFromGPS
(current_longitude, current_latitude,

spoofed_longitude, spoofed_latitude) [algorithm

Vi, < Ve +U [update ), with bias ]
11: espr = f(t,,; — 1) [using equation |
12: Uspf = Cspf [using equation [22]
13: 55p f = Uspf
14: Update x [using equation
15:  end while
16: end if

Let us consider an AV modeled by Fig. that has a
state space representation described by equation under
normal conditions and equation under the influence of a
GPS spoofing attack. Assuming the vehicle is under normal
operating conditions at the initial time, we have to design
an anomaly-based intrusion detection strategy to detect GPS
anomalies and, in turn, detect the GPS attacks.

IV. EXPERIMENTAL EVALUATION

To validate the proposed GPS-IDS framework and demon-
strate its effectiveness, field experiments have been conducted
using an AV robotic testbed. The testbed has been designed
and developed by following the Autonomous Vehicle Behavior
Model presented in Fig. ] This testbed has been utilized to
perform GPS spoofing attack experiments and collect relevant
data. The collected datasets have been used to conduct a series
of experiments and validate the GPS-IDS framework.

A. Autonomous Vehicle Testbed (AVT)

The Autonomous Vehicle Testbed or AVT is a custom-built
autonomous rover that can navigate through a predefined path
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using GPS guidance. It utilizes an array of state-measuring
sensors, including accelerometer, magnetometer, barometer,
gyroscope, and digital compass for accurate state estimation.
In accordance with the Autonomous Vehicle Behavior Model,
the AVT employs a PID controller and a multi-sensor fusion-
based EKF failsafe. The EKF failsafe is triggered when
the EKF variances associated with any two state-measuring
sensor readings exceed a predefined EKF threshold value
for 1 second. The AVT uses Ardupilot [64], an open-source
software and hardware platform designed for building custom
unmanned ground and aerial robotic vehicles. An Ardupilot-
based autopilot generates the velocity and steering angle com-
mands from the GPS and feedback from the state-measuring
sensors of the AVT. These commands are then passed to
the PID controller for execution. To program the AVT and
define a path to follow using GPS, a Ground Control Station
software supported by Ardupilot was utilized. The Ground
Control Station computer receives all vehicular data via the
telemetry modules in real time and stores them in the local
memory of the computer. These vehicular data are referred to
as “Dataflash logs”, and collected at Ardupilot’s default data
update rate of 1 Hz.

The hardware architecture of the AVT is divided into two
parts: the Rover Unit and the Attacker Unit. The Rover Unit
consists of a 1/10"" scale Radio Controlled truck chassis,
a Pixhawk flight controller, a Neo M8N GPS receiver with
a built-in compass, telemetry modules, Radio Transmitter-
Receiver modules, and other related components. The Attacker
Unit consists of a Raspberry Pi-4 model B to generate the
spoofed GPS baseband signal data stream. A HackRF One
Software Defined Radio (SDR) converts this data stream to
Radio Frequency and transmits the spoofed signal with an
antenna. The hardware architecture of the AVT is presented

in Fig.

B. GPS Spoofing Attack on the AVT

To perform the GPS spoofing attack on the AVT system,
a real-life spoofing attack scenario was generated based on
the Attacker Model outlined in Section of this paper.
The attack experiment utilized a single spoofed signal, math-
ematically denoted as Ny, = 1. Consistent with the standard
L1 GPS signal, the spoofed signal employed a carrier wave
frequency of 1575.42 MHz. The navigation message contained
information specific to a single spoofed location, which was
modulated onto the carrier wave using the BPSK modulation

Fig. 5: Hardware Architecture of the AVT

technique. As outlined in Algorithm [2] the spoofing attack
affected the AVT control system and compromised its normal
state.

C. Data Collection

The datasets were collected in two distinct locations sepa-
rated by approximately 4 miles: The University of Arizona
campus, and the Alvernon Park— both located in Tucson,
Arizona, USA. During data collection, the vehicle was con-
sistently operated in autonomous mode guided by GPS. As a
safety precaution, a wireless remote controller was employed
for manual control of the vehicle to mitigate potential hazards.

To collect normal data, a circular path consisting of 7 way-
points including the home location was mapped and uploaded
to the AVT from the Ground Control Station. Each round of
normal data collection was considered completed if the vehicle
followed all 7 waypoints and returned to its home location.
This way, 180 rounds of normal data were collected while no
attack was imposed. To collect attack data, the AVT was oper-
ated in autonomous mode for 10 seconds without imposing any
attack; afterward, the attack was launched. During one round
of attack data collection, the spoofing attack was performed
on the vehicle for 300 seconds. This way, 65 rounds of attack
data were collected. By extracting the dataflash logs after each
autonomous operation, all vehicular data were stored, labeled,
and added to the dataset. To distinguish between the two
categories of data, the normal and attack data were labeled
by 0’s and 1’s, respectively.

D. Autonomous Vehicle GPS Dataset (AV-GPS-Dataset)

The AV-GPS-Dataset is composed of three subsets, each
with varied entries, namely AV-GPS-Dataset 1, AV-GPS-
Dataset 2, and AV-GPS-Dataset 3. Each subset contains two
classes of data: Normal and Attack data, and they are extracted
as Comma Separated Value (CSV) files from the Ground Con-
trol Station computer. The AV-GPS-Dataset mainly consists
of temporal features of the AVT. The features and labels
are consistent across all datasets, ensuring uniformity in the
categorization of the data.

AV-GPS-Dataset 1 is the largest subset containing 62,042
entries, out of which, 46,787 are labeled as normal vehicular
data (approximately 75%), and 15,255 are labeled as attack
data (approximately 25%). This set contains experimental data
from two different locations at the University of Arizona
Campus. Both locations were chosen so that the AVT could
have a clear reception of the GPS signal and no obstacle
could block the GPS reception. Here, we collected the normal
data and attack data in separate sessions, and afterward,
merged the two types of data to form the dataset. The dataset
comprises three distinct GPS spoofing scenarios- Scenario
I: GPS spoofing when the AVT is following a straight line,
Scenario II: GPS spoofing when the AVT is making turns,
and Scenario III: GPS spoofing when the AVT is stationary.

AV-GPS-Dataset 2 is the second subset and contains 6,890
entries, with 5,184 labeled as normal (approximately 75%) and
1,706 labeled as attack data (approximately 25%). This dataset
was collected from outside the University of Arizona Campus
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(Alvernon Park), incorporating a different location and driving
environment. This location had more trees to obstruct GPS
reception partially, making the autonomous operation more
challenging for the AVT. This subset was also collected in
separate sessions, with normal and attack data merged to form
the dataset. It comprises two spoofing scenarios, Scenario I
and Scenario III.

AV-GPS-Dataset 3 is the smallest subset collected from the
eastern part of the University of Arizona Campus. It contains
only 636 entries, with 241 labeled as normal (approximately
38%) and 395 labeled as attack data (approximately 62%).
This subset was collected in a single session to capture the
transition between the normal and attack state of the AVT.
The complete AV-GPS-Dataset is publicly available at [34],
with a comprehensive explanation of the dataset features.

E. Experimental Analysis

In this section, we present the experiments that were used
to analyze the AV-GPS-Datasets and evaluate the performance
of the GPS-IDS approach.

1) Experiment 1: State Estimation of the AVT using the
Dynamic Bicycle Model: This experiment establishes a con-
nection between the Autonomous Vehicle Behavior Model and
the actual AVT. In this experiment, we estimated the states of
the AVT using the dynamic bicycle model presented in section
The estimated results are then compared with the actual
vehicle states obtained from 46,787 instances of normal data
from AV-GPS-Dataset 1. Since a small-scale testbed is used to
represent the real vehicle, it is assumed that the distances of the
front and the rear wheel axle from the center of mass are equal.
It is also assumed that the cornering stiffness coefficients for
the front and rear wheels are equal to 1. Table [I] presents the
physical parameters of the AVT that were used to identify
the system matrix “a” and the input matrix “b”. Substituting
these values in Equation [T5] the final dynamic state equation
obtained is as follows:

0.0 —-0.4

vl [0.8 v
{4 - [0.0 1.1169} {4 T [—2.5384} o @

The estimated results of the lateral dynamics of the AVT
compared with the actual values are shown in Fig. [6] From
Fig. [6] it can be observed that the estimated states using the
dynamic bicycle model follow a similar distribution as the
actual values of the yaw rates and lateral velocities. Therefore,

“
g
g

—— Estimated Lateral Velocity
Actual Lateral Velocity

—— Estimated Yaw Rate
Actual Yaw Rate

ond (m/s)
w s
ond (degls)

5
- 8

in Meter per Sect
per Sec

o 1001 !

|

|
g
g

T asdaea e

0 25 50 75 100 125 150 175 200 4 25 50 75 100 125 150
Time in Second (s) Time in Second (s)

Yaw Rate in Degr
&
g
8

P M NS

i
8
g

175 200

(a) Estimated Lateral Velocity vs (b) Estimated Yaw Rate vs Actual
Actual Velocity Yaw Rate

Fig. 6: Estimated Dynamics vs Actual Dynamics

TABLE I: Physical Parameters of the Autonomous Vehicle
Testbed (AVT)

AVT Parameters Values

Mass, m 2.5 kg

Length, [ 0.56 m

Width, w 032 m

Yaw moment of inertia, I, 0.0867 kg — m?
Distance between the front wheel 022 m

axle and Center of Mass, [ ’

Distance between the rear wheel 022 m

axle and Center of Mass, [, ’

Nominal velocity, v 1 m/s

the derived dynamic bicycle model can represent the lateral
dynamics of the AVT well. This points out the necessity of
adapting the dynamic bicycle model to capture the behavior
of the autonomous vehicle and collect data on the parameters
identified by the vehicle behavior model. Since the presented
vehicle model is capable of estimating the distributions of the
next states of the AVT correctly, the state space representation
accurately models the testbed. The differences in these values
can be accepted based on the assumption that the field exper-
iments added some noise that is not considered in the state
equation.

2) Experiment 2: Attack Impact on Pose Measurements and
Controller Input/ Output: This experiment presents a compre-
hensive analysis of the behavior of the AVT under normal
operating conditions and under the influence of GPS spoofing
attack. We initially depicted the AVT’s normal behavior in
terms of pose measurements and controller input/ output by
plotting one round of normal data, as shown in Fig. [/| Fig.
and Fig. [7b]illustrate the AVT’s position and orientation, while
Fig.[/c|and Fig.[/d|illustrate the cross-track error and velocity,
respectively, under normal operating conditions. From Fig.
it is observed that the AVT follows a circular trajectory
with a velocity ranging from 0 m/s to 2.5 m/s. During its
path traversal, it effectively corrects any cross-track errors and
adjusts its yaw angles accordingly.

To facilitate a clear comparison of the attack impact, we
then plotted one round of normal data with the corresponding
attack data pertaining to the pose measurements and controller
input/ output of the AVT, as presented in Fig. [§] In Fig. [§] it
is apparent that the AVT’s position is significantly affected by
the spoofed GPS signals. It deviates from its regular circular
trajectory and moves toward a different direction along the
X coordinate (Fig. [8a) at an irregular velocity spiking to as
high as 80 m/s, and then decelerating to 0 m/s (Fig. 8d). In
Fig. we can observe an abnormal rise in cross-track errors
exceeding 740 meters, then dropping to around O meters after
35 seconds and continuing to be the same. The AVT was
unable to correct this error and adjust its heading, causing
the yaw angle to remain unchanged (Fig. [Bb). During this
time, the AVT had lost all the satellite locks and remained
stationary due to the variance in EKF estimates. Nonetheless,
on the Ground Control Station map, the AVT was observed
virtually progressing toward the location indicated by the
spoofed signals, which is shown in Fig. 0]

3) Experiment 3: Performance Analysis of the Machine
Learning Models with Different Training Sets: This experi-
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ment evaluated the GPS-IDS approach on the AV-GPS-Dataset
using different machine learning models. To benchmark vari-
ous machine learning techniques, including ensemble methods,
neural networks, and tree-based algorithms, seven models
were chosen for detection: Random Forest (RF), XGBoost
(XGB), Support Vector Machine Classifier (SVC), Multi-
Layer Perceptron (MLP), AdaBoost, Gradient Boosting (GB),
and Decision Tree (DT).

Features associated with equations [I3] (Vehicle Model
block), [16] (Localization block), (State Estimation block),
[T8] (Motion Planning block), and [20] (PID Controller block)
from the Autonomous Vehicle Behavior Model (Fig. ) are
extracted and utilized in the machine learning models. To
maintain the proportion of samples for each class consistently
across both training and testing phases, stratified 5-fold sam-
pling was employed to partition the data into training and
testing sets. The training approach is based on supervised
learning, where 4 folds (80%) were utilized for training, and

the remaining fold (20%) was utilized for testing. Three cases
were considered to train the models, Case I: Train on 80% of
AV-GPS-Dataset 1, and test on 20% of AV-GPS-Dataset 1, AV-
GPS-Dataset 2 and AV-GPS-Dataset 3; Case II: Train on 80%
of AV-GPS-Dataset 2, and test on AV-GPS-Dataset 1, 20% of
AV-GPS-Dataset 2 and AV-GPS-Dataset 3; Case III: Train
on 80% of AV-GPS-Dataset 3, and test on AV-GPS-Dataset
1, AV-GPS-Dataset 2 and 20% of AV-GPS-Dataset 3. For all
three cases, the performance of the machine learning models
is measured in terms of Accuracy, Precision, Recall, and F1-
score. For each model, a combination of hyperparameters
was utilized and fine-tuned to find the optimal performance.
The performance of machine learning algorithms on different
datasets is presented in Table [lIl The results indicate that the
performance varies across different datasets as the training set
changes. It can be observed that Case I exhibits high accuracy
and F1 scores for most models, while the F1 scores drop for
most models in Case III. This drop can be attributed to the
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TABLE II: Performance of the Machine Learning Classification Models on AV-GPS-Datasets

AV-GPS-Datasets Metrics RF XGB SvC MLP | Adaboost GB DT
= Accuracy | 0972 | 0965 | 0.972 | 0.974 0.867 0.970 | 0.933
2 | est on 20% of Dataset 1 | Precision | 0:994 | 0969 | 0.985 | 0979 0.671 0.962 | 0.810
g ‘ ‘ Recall | 0.899 | 0.893 | 0.903 | 0.919 0.935 0.919 | 0.965
A Fl Score | 0.944 | 0.929 | 0.942 | 0.948 0.782 0.939 | 0.881
s o Accuracy | 0.975 | 0.979 | 0.999 | 0.995 0.250 0.842 [ 0.861
EE Test on Dataset 2 Precision | 0.912 | 0.933 | 0.999 | 0.984 0.248 0.610 | 0.640
® Recall | 0.997 | 0.986 | 0.997 | 0.996 1 1 0.997
Z F1 Score | 0.953 | 0.959 | 0.998 | 0.990 0.397 0.758 | 0.780
z Accuracy | 0.965 | 0.945 | 0.963 | 0.048 0.636 0.874 | 0.902
g Test on Dataset 3 Precision | 0.997 1 0.997 | 0.967 0.636 0.839 | 0.883
3 : : Recall | 0.948 | 0.913 | 0.945 | 0.950 1 0.992 | 0975
= FI Score | 0.972 | 0.954 | 0.970 | 0.958 0.778 0.909 | 0.927
Average F1 Score in Case I 0.956 | 0.947 | 0970 | 0.965 0.652 0.869 | 0.862
S Accuracy | 0.891 | 0.890 | 0.760 | 0.964 0.891 0982 | 0973
g Test on Dataset | Precision | 0.992 | 0.994 | 0.980 | 0.996 0.992 0.978 | 0.997
g ‘ ‘ Recall | 0.576 | 0.570 | 0.058 | 0.861 0.577 0.952 | 0.899
=8 FI Score | 0.729 | 0.725 | 0.109 | 0.924 0.730 0.965 | 0.946
w3 Accuracy | 0.998 | 0.998 | 0.998 | 0.996 0.974 0.970 | 0.922
25 | st on 20% of Dataset 2 | Precision | 0998 | 0.998 | 0.994 | 0.998 0.998 0.961 | 0.926
C= est on 20% ol Datase Recall | 0.996 | 0.996 | 0.995 | 0.985 0.897 0.919 | 0.753
Z F1 Score | 0.997 | 0.997 | 0.997 | 0.992 0.945 0.939 | 0.830
z Accuracy | 0.973 | 0.971 | 0.963 | 0.971 0.973 0.874 | 0.965
g Test on Dataset 3 Precision 1 1 0.997 | 0.997 0.997 0.839 1
3 : : Recall | 0958 | 0.955 | 0.945 | 0.958 0.960 0.992 | 0.945
= FI Score | 0.978 | 0.977 | 0.970 | 0.977 0.978 0.909 | 0.972
Average F1 Score in Case II 0.902 | 0900 | 0.692 | 0.964 0.884 0.938 | 0916
= Accuracy | 0.891 | 0.891 | 0.760 | 0.903 0.739 0.766 | 0.888
g Test on Dataset | Precision | 0.983 | 0.982 | 0.939 | 0.904 0.487 0.536 | 0.982
g ‘ ‘ Recall | 0581 | 0.582 | 0.061 | 0.693 0.546 0.586 | 0.570
=2 FI Score | 0.730 | 0731 | 0.115 | 0.784 0.515 0.560 | 0.721
e Accuracy | 0.998 | 0.998 | 0.807 | 0.990 0.953 0.973 | 0.995
g Test on Dataset 2 Precision | 0.995 | 0.993 | 0.979 | 0.961 0.842 0.903 | 0.985
o Recall 1 1 0.228 1 1 1 0.998
Z F1 Score | 0.997 | 0.996 | 0.369 | 0.980 0.914 0.949 | 0.991
z Accuracy | 0.962 | 0.959 | 0.945 | 0.940 0.952 0.951 | 0.971
S Precision | 0.984 | 0.965 | 0.967 | 0.946 0.963 0.953 1
5 | Teston 20% of Dataset 3 | " i | 0955 | 0970 | 0.945 | 0960 | 0963 | 0970 | 0.955
= FI Score | 0.969 | 0.968 | 0.956 | 0.953 0.963 0962 | 0.977
Average F1 Score in Case 11 0.899 | 0.898 | 0.430 | 0.905 0.797 0.823 | 0.896
Average F1 Score of all three cases 0919 | 0915 | 0.714 | 0.944 0.777 0.876 | 0.891

smaller size of the training set in Case III, which contains a
limited number of entries representing only the transition of
the attack. In this case, the test sets are significantly larger than
the training set (AV-GPS-Dataset 1 is over 110 times larger,
and AV-GPS-Dataset 2 is over 12 times larger), which declines
the model performances. Overall, MLP consistently performs
with F1 scores above 90% in all three cases, achieving the
highest average F1 score of 94.4%. Following closely, RF
and XGB demonstrated similar and second-best performances,
achieving average F1 scores of 91.9% and 91.5%, respectively,
in the three considered cases. The DT classifier secured the
third-best performance, attaining an average F1 score of 89.1%
across the three cases.

4) Experiment 4: Tuning of the Detection Threshold T:
In this experiment, we conducted an analysis to optimize the
predefined detection threshold T of the GPS-IDS framework
by evaluating the probability scores of normal data and attack
data from AV-GPS-Dataset 3. The machine learning model
that performed the best in Experiment 3, namely MLP, was
employed for this purpose. The resulting data were plotted to
determine a suitable detection margin, as illustrated in Fig.
Fig. depicts the probability score distributions for normal
and attack data obtained by applying Case I and Case II

TABLE III: False Positive (FP) and False Negative (FN) Rates
for Different Detection Margins

Detection | Normal Data | Attack Data FP FN
Margin Misclassified | Misclassified Rate Rate
04 - 0.5 1 1 0.0021 | 0.0012
03-0.5 7 1 0.0146 | 0.0012
04 -0.6 1 7 0.0021 | 0.0087
0.3 - 0.6 7 7 0.0146 | 0.0087

training methodologies on the same graph. By comparing the
distributions, it becomes evident that the two kinds of data can
be effectively distinguished with a significant margin indicated
by the dotted bars. Table shows the False Positive and
False Negative Rates as we expand the margin. Based on the
findings presented in Table we can see that selecting a
detection threshold T within a range of 0.4 to 0.5 produces
optimal outcomes. This range leads to the misclassification
of only 1 instance of normal data and 1 instance of attack
data, resulting in a False Positive Rate of 0.0021 or 0.21%
and a False Negative Rate of 0.0012 or 0.12%. Thus, it can
be deduced that opting for a detection threshold T in the range
of 0.4 to 0.5 offers the lowest incidence of false detection and
misclassification.
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TABLE IV: Results of the Time Series Analysis

Attack Detection Time (in seconds)

MLP | XGB | RF | DT | EKF
Case 1 10 16 16 16 23
Case II 10 10 10 16 23

5) Experiment 5: Time Series Analysis of the Machine
Learning Models: In this experiment, we evaluated the effec-
tiveness of the 4 best-performing models from Experiment 3
(MLP, RF, XGB, and DT) in detecting an attack with respect
to time on AV-GPS-Dataset 3. The training phase involved
training the models using Case I and Case II methodologies,
followed by testing on AV-GPS-Dataset 3. The outcomes of
the time series analysis are represented in Fig. [TT} As depicted
in Fig. the attack was initiated in the 142" second and
was subsequently detected by the AVT’s EKF algorithm in the
165" second (23 seconds delay). In both training cases, all the
models succeeded in detecting the attack before the EKF. In
Fig. MLP was capable of detecting the attack at the 152"¢
second, followed by RF, XGB, and DT at the 158" second.
Similarly, in Fig. m the MLP, XGB, and RF identified the
attack at the 152" second, while the DT detected it at the
158" second. Table [V] summarizes the attack detection times
for each classifier, revealing that MLP achieved the fastest
detection time of 10 seconds in both training methodologies.

While a 10-second detection delay is considerably high in
AV applications, it is important to highlight that the attack
requires approximately 4-7 seconds to jam the reception of
the authentic GPS signal and be effective on the AV. There
are scopes for further improving the detection delay by fusing
multiple detection techniques and increasing granularity.

V. CONCLUSION AND FUTURE WORK

This paper presents a novel anomaly behavior analysis-
based GPS Intrusion Detection framework called the GPS-IDS
that detects abnormal GPS navigation in AVs. The approach
uses physics-based vehicle modeling to represent the behavior
of the vehicle. A modified dynamic bicycle model is utilized
to capture the normal behavior of the vehicle and machine
learning techniques are used to detect the anomalous behavior.
Moreover, a novel dataset family called the AV-GPS-Dataset
with over 69,000 instances of real-world autonomous vehicle
normal data and GPS spoofing attack data, is introduced
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Fig. 11: Time series analysis on AV-GPS-Dataset 3

in this paper. The performance of the proposed GPS-IDS
approach is evaluated using the AV-GPS-Dataset, and the
experimental results affirm its high detection rate of GPS
spoofing attacks. Additionally, it is validated that the proposed
approach exhibits faster detection times in comparison to the
EKF-based detection algorithm. In contrast to the existing
segregated intrusion detection techniques that concentrate only
on individual sensor data, our approach considers the overall
behavior of the system, providing a more comprehensive
approach to detect GPS attacks. We argue that using GPS-
IDS in conjunction with sensor-specific intrusion detection
systems can provide a powerful defense mechanism against
GPS spoofing attacks in autonomous vehicles.

Moving forward, there are several promising research av-
enues to extend the contributions of this work. The GPS-
IDS algorithm can be refined by incorporating additional
operational parameters in the Autonomous Vehicle Behavior
Model, such as integrating accurate modeling of multiple
sensors and more robust control algorithms. Further research
can be done to explore the effectiveness of integrating GPS-
IDS with existing sensor-specific detection systems to enhance
the overall security of autonomous vehicles. Additionally, the
feasibility of real-world deployment scenarios, including cloud
environment computing, onboard deployment on resource-
constrained edge devices, or hybrid computation strategies
that balance cloud and onboard processing can be investigated
to validate the scalability and practicality of the GPS-IDS
approach. Finally, the development of a digital twin for the
autonomous vehicle behavior model emerges as a promising
direction, providing a virtual environment for comprehensive
testing and simulation.
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