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DriveGenVLM: Real-world Video Generation for Vision Language
Model based Autonomous Driving

Yongjie Fu, Anmol Jain, Xuan Di*, Xu Chen, and Zhaobin Mo

Abstract—The advancement of autonomous driving tech-
nologies necessitates increasingly sophisticated methods for
understanding and predicting real-world scenarios. Vision lan-
guage models (VLMs) are emerging as revolutionary tools with
significant potential to influence autonomous driving. In this
paper, we propose the DriveGenVLM framework to generate
driving videos and use VLMs to understand them. To achieve
this, we employ a video generation framework grounded in
denoising diffusion probabilistic models (DDPM) aimed at
predicting real-world video sequences. We then explore the
adequacy of our generated videos for use in VLMs by employing
a pre-trained model known as Efficient In-context Learning on
Egocentric Videos (EILEV). The diffusion model is trained with
the Waymo open dataset and evaluated using the Fréchet Video
Distance (FVD) score to ensure the quality and realism of the
generated videos. Corresponding narrations are provided by
EILEYV for these generated videos, which may be beneficial in
the autonomous driving domain. These narrations can enhance
traffic scene understanding, aid in navigation, and improve
planning capabilities. The integration of video generation with
VLMs in the DriveGenVLM framework represents a significant
step forward in leveraging advanced AI models to address
complex challenges in autonomous driving.

[. INTRODUCTION

In the rapidly evolving field of autonomous driving, the
integration of advanced predictive models into vehicular
systems or transportation systems has become increasingly
critical for enhancing safety and efficiency [1], [2]. Among
the myriad of sensory technologies employed, camera-based
video prediction stands out as a pivotal component, offering
a dynamic and rich source of real-world data. Through
the adoption of a cutting-edge diffusion model approach,
this research not only contributes to the advancement of
autonomous driving technologies but also sets a new bench-
mark for the application of predictive models in enhancing
vehicular safety and navigational precision.

Content generated by artificial intelligence is presently a
leading area of study within the domains of computer vision
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and artificial intelligence. The generation of photo-realistic
and coherent videos is one of the challenging areas because
of the limitations of memory and computation time. In the
autonomous vehicle area, predicting the video from a vehi-
cle’s front camera is crucial for several reasons, particularly
in the context of autonomous driving and advanced driver-
assistance systems (ADAS) [3]. In this paper, we utilize the
videos from the vehicle’s surrounding cameras and predict
future frames.

The generative model has also been utilized in the area
of transportation and autonomous driving [4], [5]. Models
are increasingly recognized for their capability to understand
driving environments. Vision language models (VLMs) are
now being utilized for autonomous driving applications. To
enhance the utility of VLMs and explore the application
of generative models to video content within VLMs, it
is essential to validate generative models’ predictions to
confirm their relevance and accuracy in real-world scenarios.
DriveGenVLM introduces the in-context VLM as a method
to validate predicted videos from a diffusion-based generative
model by providing textual descriptions of driving scenarios.

A. Related Work

Diffusion-based architectures have become increasingly
popular in recent research for generating images and videos.
Diffusion models have been applied to a variety of tasks for
images, including image generation [6], image editing [7],
and image-to-image translation [8]. Video generation and
prediction are effective approaches to understand the real
world. Several standard architectures have been utilized in
this task, including Generative Adversarial Networks (GANs)
[9], flow-based models, auto-regressive models, and Varia-
tional Autoencoders (VAEs) [10]. Recently, more diffusion
models have been applied in this domain and achieve better
video quality and more realistic frames, such as video
generation [11] and text prompt to video generation [12].

Diffusion models are a class of deep generative models
characterized by two main phases: (i) a forward diffusion
phase, where the initial data is incrementally disturbed by
the addition of Gaussian noise across multiple steps, and (ii)
a reverse diffusion phase, where a generative model aims
to reconstruct the original data from the noise-added version
by progressively learning to invert the diffusion process, step
by step. Denoising Diffusion Probabilistic Models (DDPM)
represent a common type of generative model designed to
learn and generate a specific target probability distribution
through a diffusion process. DDPMs have been validated to



be more effective than the traditional generation models, such
as GANs and VAE.

Generating long videos requires a large amount of com-
putation sources. Some works overcome this challenge with
autoregressive based models, such as Phenaki [12] and
[13]. However, autoregressive models may lead to unrealistic
scene transitions and persistent inconsistencies in extended
video sequences because these models lack the opportunity
to assimilate patterns from longer footage. To overcome this,
MCVD [14] employs a training approach that prepares the
model for various video generation tasks by independently
and randomly masking either all preceding or subsequent
frames. Meanwhile, FDM [11] introduces a framework based
on Diffusion Probabilistic Models (DDPMs) that is capable
of generating extended video sequences with realistic and
coherent scene completion across diverse settings. NUWA-
XL [15] introduces a ”’Diffusion over Diffusion” architecture
designed for generating extended videos through a coarse-
to-fine” method.

In recent years, large language models (LLMs), which are
text-based, have seen a surge in popularity [16]. Additionally,
various generative vision-language models (VLMs) have
been introduced in the autonomous driving domain. RAG-
Driver [17] was proposed to leverage in-context learning
for high performance, explainable autonomous driving. We
leverage the in-context learning capabilities of EILEV [18] to
generate descriptions of driving scenarios. In DriveGenVLM,
the in-context VLMs allow us to process videos predicted
by the diffusion framework, which can then be recognized
by other vision-based models, potentially contributing to
decision-making algorithms in autonomous driving. To the
best of our knowledge, DriveGenVLM is the first work to
integrate a video generation model and a Vision Language
Model (VLM) into the autonomous driving domain.

B. Contributions of This Work

The key contributions of DriveGenVLM are summarized

as follows:

1) Apply conditional denoising diffusion probabilistic
models to the domain of driving video prediction.

2) Test the video generation framework in the Waymo
open dataset of different camera angles to validate the
feasibility for real world driving scenarios.

3) Utilize in-context vision language model to generate
descriptions of the predicted video and validate that
these videos can be applied for Vision language model
based autonomous driving.

The rest of the paper is organized as follows. Sec.
introduces the preliminary knowledge used in this paper.
Sec. |l1]] illustrates the solution approach. Sec. [[V]introduces
the setting and results of the experiments. And Sec
concludes this study.

II. PRELIMINORY

A. Denoising Diffusion Probabilistic Models (DDPM)

The Denoising Diffusion Probabilistic Model is a type of
generative model that has gained significant attention in the

field of machine learning and computer vision [19]. DDPM
operates through a forward process that transforms data into
noise, and a backward process that reconstructs the original
data from the noise. The goal of the forward process is to
convert any data into a basic prior distribution, whereas the
subsequent objective involves developing transition kernels
to undo this conversion. To generate new data points, one
begins by drawing a random vector from the prior distribu-
tion, then proceeds with ancestral sampling via the reverse
Markov chain. The key to this sampling technique is to
train the reverse Markov chain to replicate the time-reversed
progression of the forward Markov chain accurately.
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Fig. 1: Process of DDPM model.

For the conditional extension, in which the modeled x is
conditioned on observationsy. Given a data distribution xy ~
q(xo), the forward process generates a sequence of random
variables x1,x2,...,x7. X9 represents the original, noise-free
data, while x; incorporates a slight amount of noise. This
process continues up to xr7, which is nearly uncorrelated
with xo and resembles a random sample drawn from a unit
Gaussian distribution. The distribution of x;, depends only on
X;_1, the transition kernel is:

N (x5 /01, (1 — o). (1)

The joint distribution is defined by the diffusion process
and a data distribution ¢(xo,y) in Equ.

Q(Xt |Xz—1) =

~

q(x0,y H (xe|xe-1) (2)

q(xo:r|y) =
Denoting Diffusion Probabilistic Models (DPMs), these
models operate by reversing the diffusion sequence. For
given x; and y, we use a neural network to estimate
po(x—1]x,y), serving as an approximation for g(x,_i|x;,y).
This estimation grants us the capability to procure samples of
xo by commencing with the sampling of x7 from a standard
Gaussian distribution, a choice made due to the diffusion
process’s initial state resembling a Gaussian distribution.
Subsequently, we iteratively sample backwards, from x7 to
Xg, through pg. The aggregate distribution of the sampled
xo:7 conditional on y is expressed as:

~

po(xorly) = H

(xe—1]2x,y) 3)



Here, p(x7) signifies a unit Gaussian distribution indepen-
dent of 6. Training a conditional DPM entails the adjustment
of pg(x;—1]x:,y) to closely match g(x,_1|x;,y) across the full
range of ¢, x;, and y values.

B. In-context Learning on VLM
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Fig. 3: Architecture of EILEV.

In-context learning was originally proposed in the paper
of GPT-3 [20], which refers to the ability of a model to learn
or adapt its responses based on the context provided within a
single interaction, without any explicit updates or retraining
on its underlying model.

We employ EILEV [18], a training technique developed
to enhance in-context learning in Vision Language Models
(VLMs) for first-person videos. As shown in Figure. [3]
EILEV’s architecture for an interleaved context-query sce-
nario involves using the unmodified Vision transformer from
BLIP-2 [21] to process video clips. The resulting compressed
tokens are mixed with text tokens in the sequence of the
initial context-query instance. These combined tokens are
then input into BLIP-2’s static language model, which pro-
duces new text tokens. This method can generalize out-of-
distribution videos and texts and rare actions vis in-context
learning. We make use of the pre-trained model to generate
language narrations for the driving videos to validate that the
generated results are explainable and realistic.

III. METHODOLEGY

Generating long, coherent, and photorealistic videos is still
a challenge. The Flexible Diffusion Model (FDM) addresses
this issue using a conditional generative model. We adopt
a similar approach in DriveGenVLM. To sample coherent
videos with a large number of frames, we can sample an
arbitrary length of video condition on a small number of
frames with a generative model. The goal is to sample
coherent photo-realistic videos of driving scenarios with
some frames. We utilize a sequential procedure to sample
an arbitrarily long video with a generative model that can
sample or condition on only a small number of frames at
once.

Broadly, we define a sampling scheme as a series of

tuples [(XS,YS)]f:l, where each tuple consists of a vector X

indicating the indices of frames to be sampled and a vector
Y, showing the indices of frames to use as conditions for the
stages s =1,...,S.

A. Training Architecture

We utilize a U-net structure for the DDPM image frame-
work. This architecture is characterized by a sequence of lay-
ers that downscale spatial dimensions and then upscale them,
interspersed with convolutional residual network blocks and
layers that focus on spatial attention. The architecture is
illustrated in Figure. 2] The DDPM iteratively transforms
noise X7 to video frames X;. The boxes with red borders
are conditions. The right side shows the UNet architecture
of each DDPM step.

Agorithm. [I] illustrates how we sample a video using
a sample scheme. The generative model can sample any
subsets of the video frames conditioned on other subsets.
The model can generate any choice of X and Y.

Algorithm 1 Sample a video v given a sampling scheme
[(xﬁys)]f:l'

1: procedure SAMPLEVIDEO(v; 0)
2 for s« 1,...,S do

3 v v[Yy]

4 x ~ DDPM(+;y,X;, Y5, 0)
5: v[X;] + x
6
7
8:

end for
return v
end procedure

B. Sampling Schemes

[ Sampling Schemes [ Description |

Autoreg Samples x consecutive frames at each stage
conditioned on the previous ten frames.
Selects the first x frames (large groups) con-
ditioned upon the previous ten frames, then
samples consecutive frames within those
groups until all frames are sampled.
Selects primary and secondary sampling
frames, and adapts based on information
gathered during the sampling process to op-
timize frame diversity using LPIPS distance.

TABLE I: Different Sampling Schemes.

Hierarchy-2

Adaptive Hierarchy-2

Each sampling scheme’s relative efficacy heavily relies
on the dataset at hand, and there is no universally optimal
option. In this work, we experimented with three sampling
schemes as shown in Table [} The first and the most straight-
forward scheme adopted is the Autoreg, which samples ten
consecutive frames at each step by conditioning on the
previous ten frames. Another scheme used was Hierarchy-
2 which employs a multi-tiered sampling approach, first tier
with ten equidistantly chosen frames covering the unobserved
portion of the video, conditioned upon ten observed frames.
In the second tier, consecutive frames are sampled in groups,
considering the nearest preceding and proceeding frames
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Fig. 2: Training Framework Employing U-Net with Diffusion Probabilistic Model (DDPM) Integration.

until all frames are sampled. Lastly, we used Adaptive
Hierarchy-2 (Ad), which is only achievable through the
implementation of FDM. Adaptive Hierarchy-2 strategically
selects conditioning frames during testing to optimize frame
diversity, measured by the pairwise LPIPS distance between
them.

IV. EXPERIMENTS
A. Datasets

The Waymo Open Dataset [22] is a wide-ranging dataset
that uses many sensors to aid in the progress of self-
driving technology. It contains high-quality sensor data from
Waymo’s group of autonomous vehicles and is made up of
more than 1,000 hours of videos. These videos are taken with
various sensors such as LIDARs, radars, and five cameras
(front and sides); they give a complete view around the car at
all times or what we call 360-degree visibility. This group of
data has very careful labeling, including marks for vehicles,
people walking, bicycle riders and other things found on the
road. This makes it extremely helpful for those working as
researchers or engineers in this area to enhance their skills
with perception (understanding), prediction (guessing what
happens next) and simulation algorithms in self-driving cars.
The Dataset V2 format is designed to be usable with Apache
Parquet file formats and supported components. Here, a
component is a set of related fields/columns that are required
to understand each individual field.

B. Experiment Setup

To validate the algorithm in real-world driving scenarios,
we utilize the Waymo Open Dataset, which encompasses
diverse real-world environments across several cities. We
extracted data for all the five present cameras in the dataset.
We then pre-processed the datasets and extract the data from
the three cameras being Front, Front-left, Front-right. In total
we processed 138 videos. A total of 108 videos comprising
of all three cameras divided equally were taken for training
purposes, while the 10 videos for each of the three cameras
for the test set. The maximum number of frames found for
train videos was 199 frames, minimum contained around 175

Camera Number Camera Type | Iterations | GPU Hours
1 Front 200,000 48
3 Front-right 150,000 36
2 Front-left 100,000 24

TABLE II: Training details for each camera

frames. So we used 175 frames as the limit for all videos.
The resolution was reduced to 128 x 128, and transformed
into 4D tensors.

The model was operated on an 8-core Intel Cascade Lake
processor and an NVIDIA L4 GPU with 24 GB memory in
Debian GNU/Linux 11. A batch size of 1 with a learning
rate of 0.0001 was used. The details of each camera training
are shown in table [l The front was trained from scratch
without using any pre-trained weights for 200,000 iterations.
Front-right used pre-trained weights from Camera-1 and was
trained for 150,000 iterations, and Front-left used pre-trained
weights from Camera-3, trained for 100,000 iterations. A
total of 108 GPU hours were spent on training.

C. Metrics

We utilize FVD (Fréchet Video Distance) [23], a metric
used to evaluate the quality of videos generated by models in
tasks like video generation or future frame prediction. Simi-
lar to the Fréchet Inception Distance (FID) used for images,
FVD measures the similarity between the distribution of
generated videos and real videos. FVD is useful for assessing
the temporal coherence and visual quality of videos, making
it a valuable tool for benchmarking video synthesis models.

D. Results

The FVD scores from our experiments on the Waymo
Open Dataset for three cameras, which are tested using
various sampling schemes, are summarized in Tables [[TI][[V]
The adaptive hierarchy-2 sampling method outperforms
the other two methods.



Sampling Scheme FVD Score
hierarchy-2 1489.0138
autoreg 1266.354
adaptive hierarchy-2 1174.563

TABLE III: FVD Scores for Front Camera.

Sampling Scheme FVD Score
hierarchy-2 1295.744
autoreg 1401.793
adaptive hierarchy-2 812.425

TABLE IV: FVD Scores for Front-left Camera.
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Fig. 5: Front-left Camera - FVD Score: 812.

Figure. [ - [6] shows prediction videos generated for each of
the three cameras, using the Adaptive Hierarchy-2 sampling
schemes yielding the lowest FVD scores. Each sub-figure
contains 2 examples of generation videos for each camera.
The frames with red bounding boxes are the ground truth
frames, and the predicted frames are below each correspond-
ing frame. The generated videos were conditioned on the first
40 frames for each example.

Sampling Scheme FVD Score

hierarchy-2 1214.684
autoreg 1338.234
adaptive hierarchy-2 1122.159

TABLE V: FVD Scores for Front-right Camera.

Fig. 6: Front-right Camera - FVD Score: 1122.

The FDM’s training on the Waymo dataset showcased its
capacity for coherence and photorealism. However, it still
struggles with accurately interpreting the complex logic of
real-world driving, such as navigating traffic and pedestrians.
This limitation is likely due to the additional challenges
present in real-world scenarios, which are absent in simulated
environments.

E. Prediction Validation by in-context learning.

To validate that our generated videos are explainable and
usable in vision language models, we employ the EILEV pre-
trained model on Ego4D, eilev-blip2-opt-2.7b [18] to test our
generated driving videos.

We utilize video clips and text pairs that describe the
camera angle, driving environment, and time of day. The
results are illustrated in Figure. [7] The action narrations
generated by the model are displayed in an orange box.
Notably, none of the verb and noun class combinations are
shared in the first two videos, as shown in the blue box. As
we can observe, the model can identify that the vehicle is
driving on a highway with the camera positioned at the front.
For the second video, the model recognizes that the vehicle
is driving at night with its front camera. The in-context
learning pre-trained model on VLMs performs well with the
generated model, indicating that the videos are explainable
and potentially usable by VLMs-based algorithms.

V. CONCLUSIONS

In summary, training the Denoising Diffusion Probabilis-
tic Model (DDPM) on the Waymo dataset has shown its
capability to produce coherent and lifelike images from
both front and side cameras. However, it continues to face
challenges in accurately capturing the complex dynamics of
real-world driving, such as detailing buildings and tracking
pedestrian movements. These difficulties are likely due to the
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Fig. 7: The VLM model with in-context learning capabilities can generate action narrations for unseen driving videos.

complexities inherent in actual driving conditions, which are
absent in synthetic datasets.

To explore potential applications of generated videos in
Vision-Language Models (VLMs) for autonomous driving,
we utilize the pre-trained EILEV model, an in-context VLM,
to generate action narrations for the videos. The results
indicate that the model can recognize unseen scenarios
and generate accurate narrations, demonstrating the potential
for deploying VLM-based autonomous driving models that
leverage outputs from generative models. The DriveGenVLM
framework highlights the potential for using generative mod-
els and Vision Language Models (VLMs) together in au-
tonomous driving tasks. For downstream applications, once
we obtain narrations of driving scenarios, we can employ
large language models to provide guidance to the driver or
some language model-based algorithms.
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